Что называется молекулой. Строение и свойства молекул. Атом и молекула: общие свойства

Очень часто можно услышать мнение, что атом будучи составной частью молекулы, обладает теми же свойствами и имеет аналогичную структуру. Такая позиция лишь отчасти имеет право на существование, поскольку частицы имеют общие и отличительные признаки. Для начала достаточно рассмотреть свойства двух объектов, и на их основе делать дальнейшие выводы.

Атом можно рассматривать как элементарную частицу однородного вещества . Такое вещество, по определению, состоит только из одного химического элемента (С, N, O и другие с периодической таблицы Менделеева). Именно наименьшая часть таких элементов, которая может быть носителем их свойств, и называется атомом. Согласно последним современным представлениям, атом состоит из трех составляющих: протонов, нейтронов и электронов.

Первые две субчастицы вместе составляют базовое ядро , которое имеет положительный заряд. Двигающиеся вокруг ядра электроны привносят компенсационный заряд с противоположным знаком. Таким образом, делается первый вывод, что большинство атомов — электрически нейтральны. Что касается оставшейся части, то в силу различных физико-химических процессов, атомы могут либо присоединять, либо отпускать электроны, что приводит к появлению заряда. Атом имеет массу и размер (определяется размерами ядра) и определяет химические свойства вещества.

Молекула

Молекула является минимальной структурной единицей вещества . Такое вещество может состоять из нескольких химических элементов. Однако, молекулой можно считать и одноатомное вещество одного химического элемента — инертный газ аргона. Как и атомы, является электрически нейтральной. Ионизировать молекулу можно, но уже значительно сложнее: атомы внутри молекулы связаны между собой ковалентной, либо ионной связью. Поэтому присоединить или забрать электрон становится значительно сложнее. Большинство молекул имеет сложную архитектурную постройку, где каждый атом заранее занимает отведенное ему место.

Атом и молекула: общие свойства

Строение . Обе частицы являются структурными единицами вещества. При этом под атомом подразумевается один определенный элемент, молекула же включает в себя уже несколько химически связанных атомов, но структура (положительное ядро с отрицательными электронами) остается той же.

Электрическая нейтральность . При отсутствии внешних факторов — взаимодействия с другим химическим веществом, направленного электрического поля и других раздражителей, — атомы и молекулы не имеют заряда.

Замещение . Атом может выступать как молекула в одном случае — при работе с инертными газами. Также молекулой может считаться одноатомная ртуть.

Наличие массы . Обе частицы имеют свою четкую массу. В случае атома масса зависит от химического элемента и определяется весом ядра (протон почти в 1500 раз тяжелее электрона, поэтому вес отрицательной частицы часто не берется во внимание). Масса молекулы определяется исходя из ее химической формулы — элементов, входящих в ее состав.

Атом и молекула: отличные свойства

Неделимость . Атом является мельчайшим элементом, из которого нельзя выделить еще меньшую частицу. (Получение иона влияет только на заряд, но не на вес). Молекулу, в свою очередь, можно разделить на более мелкие молекулы или можно разложить на атомы. Процесса распада легко добиться с использованием химических катализаторов. Иногда достаточно просто нагреть вещество.

Свободное существование . Молекула может свободно существовать в природе. Атом существует в вольной форме лишь в двух случаях:

  1. Как одноатомная ртуть или инертный газ.
  2. В условиях космоса — как отдельные атомы могут находиться любые химические элементы.

В остальных случаях атом всегда входит в состав молекулы.

Образование заряда . Взаимодействие между ядром и электроном в атоме можно легко преодолеть даже мельчайшим электрическим полем. Таким образом, — из атома легко получить положительный или отрицательный ион. Наличие химических связей между атомами внутри молекулы требует приложения гораздо большего электрического поля или взаимодействия с другим химически активным веществом.

Молекулой называют наименьшую частицу вещества, обладающую его химическими свойствами.

Молекула состоит из атомов, а точнее, из атомных ядер, окруженных внутренними электронами, тогда как внешние, валентные электроны участвуют в образовании химических связей.

А, например, в случае инертных газов понятия атома и молекулы совпадают.

Каждая молекула имеет определенный качественный и количественный состав. Так, молекула воды состоит из атомов водорода и кислорода (качественный состав), причем в ней содержится один атом кислорода и два атома водорода (количественный состав). Иногда количественный состав молекул выражают в процентах (по массе): в Н2O-11,1% водорода и 88,9% кислорода.

Кроме состава молекулы характеризуются определенной структурой или строением. Часто термины «структура» и «строение» отождествляют, иногда же их различают, говоря о «ядерной структуре» и «электронном строении» молекул. Но в любом случае необходимо четко оговаривать, о чем идет речь: о взаимном расположении и перемещении атомных ядер или же о распределении электронной плотности.

Атомы в молекулах связаны в определенном порядке. Так, в молекуле аммиака NH3 каждый атом водорода соединен одной ковалентной связью с атомом азота; между самими водородными атомами химическая связь отсутствует (последнее, правда, не означает, что между химически несвязанными атомами отсутствует вообще всякое взаимодействие (см. Химическая связь). Наличие связей между одними атомами и отсутствие их между другими изображают в виде так называемых графических, или структурных, формул.

В последнее время в химической литературе все чаще употребляют термин «топология молекул». Топология - это раздел математики, изучающий свойства тел, не зависящие от их формы и размеров. Эти свойства называют неметрическими. Молекулы обладают как метрическими свойствами (длины химических связей, углы между ними и др.), так и неметрическими (молекула может быть циклической, скажем бензол, или нециклической, я-бутан; иметь центральный атом, окруженный лигандами,- PCl5, или представлять собой как бы «клетку» и т. д.). Под топологией молекулы понимают совокупность ее неметрических свойств.

Топология молекулярных систем тесно связана с их свойствами. Например, молекулы этанола и ди-метилового эфира топологически различны, что позволяет понять разницу в некоторых свойствах этих соединений (этанол может давать реакции с участием группы ОН и водорода этой группы, эфир - нет и т. д.). Но свойства молекул зависят не только от их топологии, но и от других факторов (геометрии молекулы, распределения электронной плотности в ней и др., см. Стереохимия).

В последние годы внимание ученых привлек новый класс молекулярных систем - так называемые нежесткие молекулы. Как известно, ядра в молекулах движутся. В силу резкого различия в массах ядер и электронов ядерные движения (колебания) происходят намного медленнее электронных, поэтому можно считать, что электроны в молекулах движутся в поле неподвижных атомных ядер. Конечно, такое допущение является приближением, которое называется адиабатическим. Для многих молекул, где ядра совершают небольшие по амплитуде колебания около определенных положений в пространстве, адиабатическое приближение вполне приемлемо. Такие молекулы называют структурно-жесткими, например СН4, Н2O и т. д. Однако есть молекулы, их называют нежесткими, в которых ядра совершают значительные перемещения. В подобных случаях понятие о неизменной равновесной геометрии молекулы теряет смысл. Например, в борогидриде лития LiBH4 катион Li+ как бы обращается вокруг аниона ВН4 (см. рис. на с. 146, в середине, справа). Разумеется, чтобы ион Li+ смог начать подобное «путешествие», молекула должна получить определенную энергию. Для нежестких молекул эта энергия невелика: для LiBH4 она составляет около 16 кДж/моль, т. е. во много раз меньше энергии химической связи. Другим примером нежесткой молекулы может служить аммиак NH3. Возвращаясь к «обычным», жестким молекулам, следует отметить, что при одном и том же составе они могут иметь различную топологию и геометрию, т. е. давать разного типа изомеры (см. Изомерия; Таутомерия).

Структура и даже состав молекул могут изменяться при изменении агрегатного состояния вещества и внешних условий, главным образом температуры и давления. Например, в газообразном оксиде азота (V) существуют отдельные молекулы N2O5, тогда как в твердом состоянии в узлах кристаллической решетки этого оксида находятся ионы NO2+ и NO3 , т. е. можно сказать, что твердый N2O5 - это соль - нитрат нитрония.

В твердом теле молекулы могут сохранять или не сохранять свою индивидуальность. Так, большинство органических соединений образуют молекулярные кристаллы, в узлах решеток которых находятся молекулы, связанные друг с другом относительно слабыми межмолекулярными взаимодействиями. В ионных (например, NaCl) и атомных (алмаз, графит) кристаллах нет отдельных молекул, и весь кристалл - это как бы одна гигантская молекула. Правда, в последнее время в теории твердого тела начали широко использовать молекулярные модели, однако это потребовало некоторого пересмотра понятия элементарной ячейки кристалла (см. Кристаллохимия).

Изучение строения и свойств молекул имеет фундаментальное значение для естествознания в целом.

Цели урока:

  • рассказать ученикам о молекулах и атомах и научить различать их.

Задачи урока:

Обучающие: изучить новый материал по теме «Молекулы и атомы»;

Развивающие: содействовать развитию мышления и познавательных умений; овладению методами синтеза и анализа;

Воспитательные: воспитание положительной мотивации к обучению.

Основные термины:

Молекула – нейтральная электрически частица, которая состоит из двух и более атомов, связанных ковалентными связями; наименьшая частица вещества, которая обладает его свойствами.

Атом – самая маленькая неделимая химически часть элемента, которая является носителем его свойств; состоит из электронов и атомного ядра. Различное количество разных атомов, связанных межатомными связями, образуют молекулы.

Атомное ядро – центральная часть атома, в которой сосредоточено более 99,9% его массы.

3.Почему не видны частицы, из которых состоит вещество ?

4.Как объяснить высыхание белья после стирки?

5.Почему твердые тела, состоящие из частиц, кажутся сплошными?

Молекулы.

2.Как называются частицы, из которых состоят молекулы?

3.Опишите опыт, с помощью которого можно определить размер молекулы.

4.Различаются ли молекулы одного вещества в его различных агрегатных состояниях?

5.Что такое атом и из чего он состоит

Домашнее задание.

Попробуйте провести дома опыт по измерению размера молекулы любого вещества.

Интересно знать, что.

Понятие об атоме как о наименьшей неделимой части материи было впервые сформулировано древнеиндийскими и древнегреческими философами. В XVII и XVIII веках химикам удалось экспериментально подтвердить эту идею, показав, что некоторые вещества не могут быть подвергнуты дальнейшему расщеплению на составляющие элементы с помощью химических методов. Однако в конце XIX - начале XX века физиками были открыты субатомные частицы и составная структура атома, и стало ясно, что атом в действительности не является «неделимым».

На международном съезде химиков в г. Карлсруэ (Германия) в 1860 г. были приняты определения понятий молекулы и атома. Атом - наименьшая частица химического элемента, входящая в состав простых и сложных веществ.

Физика атомов и молекул - раздел физики, изучающий внутреннее строение и физические свойства атомов, молекул и их более сложных объединений (кластеров), а также физические явления при низкоэнергетических элементарных актах взаимодействия объектов между собой с элементарными частицами.

При изучении физики атомов и молекул основными являются такие экспериментальные методы как спектроскопия и масс-спектрометрия со всеми их разновидностями, некоторые виды хроматографии, резонансных методов и микроскопии, теоретические методы квантовой механики, статистической физики и термодинамики. Физика атомов и молекул тесно взаимосвязана с молекулярной физикой, в которой изучаются (коллективные) физические свойства тел в различных агрегатных состояниях на основе рассмотрения их микроскопического строения, а также с некоторыми разделами химии.

Давайте проведем краткий экскурс в историю развития атомно-молекулярной теории:

Список литературы

1.Урок на тему «Молекулы и атомы» С.В. Громов, И.А. Родина, учителя физики.

2.Урок на тему «Строение вещества» Фонин Илья Александрович, Камзеева Елена Евгеньевна, учитель физики, МОУ Гимназия №8, г.Казань.

3.Г. Остер. Физика. Задачник. Ненаглядное пособие.- М.: Росмэн, 1998.

4.Мейяни А. Большая книга экспериментов для школьников. М.: «Росмен». 2004 г.

5.Global Physics «Атомы и молекулы».

Отредактировано и выслано Борисенко И.Н.

Над уроком работали:

Громов С.В.

Фонин И.А.

Атомы - это маленькие частицы, из которых состоит вещество. Невозможно даже представить себе, насколько они малы. Если сложить в цепочку сто миллионов атомов, у нас получится ниточка длиной всего лишь в 1 см. В тонком листе бумаги, наверное, не меньше миллиона слоев атомов. Науке известно более ста видов атомов; соединяясь друг с другом, они образуют все окружающие нас вещества.

Представление об атомах

Мысль о том, что всё в природе состоит из атомов, возникла давно. Еще 2500 лет назад древнегреческие философы полага­ли, что вещество состоит из таких частиц, которые нельзя разделить. Само слово «атом» восходит к греческому слову «атомос», что значит «неделимый». В Древней Греции (см. статью « «) философы обсуждали гипотезу о том, что всё вещество в мире состоит из неделимых частиц. Правда, Аристотель в этом сомневался.

Термин «атом» был впервые использован английским химиком Джоном Даль­тоном (1766- 1844). В 1807 г. Дальтон выдвинул свою атомную теорию. Атомами он назвал составляющие всякое вещество малые частицы, которые не изменяются входе химических реакций. Согласно Дальтону, - это процесс, при котором атомы соединяются вместе или отделяются друг от друга. Атомная теория Дальтона лежит в основе представлений современных ученых.

В начале нашего столетия ученые начали строить модели атомов. Эрнест Резерфорд (1871 - 1937) показал, что отрицательно заряженные электроны обращаются вокруг положительно заряженного ядра. Нильс Бор (1885 - 1962) утверждал, что электроны обращаются по определенным орбитам. В 1932 г. Джеймс Чедвик (1891 - 1974) установил, что ядро атома состоит из частиц, которые он назвал протонами и нейтронами .

Атомы состоят из еще меньших, чем они сами, частиц, называемых элементарными . Центром атома является его ядро. Оно состоит из элементарных частиц двух видов - протонов и нейтронов. Есть в атоме также другие элементарные частицы - электроны ; они вращаются вокруг ядра. Существует множество разных элементарных частиц. Ученые считают, что протоны и нейтроны состоят из кварков . Элементарные частицы, входящие в состав атома, удерживают­ся вместе благодаря своим электрическим зарядам. Протоны заряжены положительно, а электроны - отрицательно. Нейтроны заряда не имеют, т.е. являются электрически нейтральными. Частицы, несущие противоположные электрические заряды, притягиваются друг к другу. Притяжение отрицательно заряженных электронов к положительно заряженным протонам, находящимся в атомном ядре, удерживает электроны на орбитах около этого ядра. В состав атома входит одинаковое число положительно заряженных протонов и отрицательно заряженных электронов, и атом электрически нейтрален.
Электроны в атоме находятся на разных энергетических уровнях, или оболочках. Каждая оболочка состоит из определенно­го числа электронов. Когда очередная оболочка заполняется, новые электроны попа­дают на следующую оболочку. Большую часть объема атома занимает пустое пространство между элементарными частицами. Отрицательно заряженные электроны удерживаются на своих энергетических уровнях силой притяжения к положительно заряженным протонам ядра.

Строение атома часто описывают строгой диаграммой, однако сегодня ученые полагают, что электроны существуют на своих орбитах в размытом состоянии. Это представление отражено на рисунке, где электронные орбиты представлены в виде «облаков». Так вы бы увидели молекулу под электронным микроскопом. Равными показаны разные уровни плотности электронов. Бирюзовым цветом отмечена область наибольшей плотности.

Атомный номер и атомная масса

Атомный номер - это число протонов в атомном ядре. Как правило, в состав атома входит одинаковое число протонов и электронов, поэтому по атомному номеру можно судить и о том, сколько в атоме электронов. В разных атомах содержится разное количество протонов. В ядре атома фосфора 15 протонов и 16 нейтронов, значит, его атомный номер 15. В ядре атома золота 79 протонов и 118 нейтронов: следовательно, атомный номер золота 79.

Чем больше протонов и нейтронов имеет атом, тем больше его масса (величина, показывающая количество вещества в составе атома). Сумму числа протонов и числа ней­тронов мы называем атомной массой. Атомная масса фосфора - 31. При исчислении атомной массы электроны в расчет не принимаются, так как их масса ничтожно мала по сравнению с массой атома. Существует особый прибор - масс-спектрометр . Он позволяет определить для каждого данного атома его массу.

Изотопы

У большинства элементов существуют изотопы, атомы которых имеют несколько отличное строение. Количество протонов и электронов в атомах изотопов одного всегда неизменно. Атомы изотопов различаются числом нейтронов в ядре. Следовательно, у всех изотопов одного элемента один и тот же атомный номер, но разная атомная масса. На этом рисунке вы видите три изотопа углерода. У изотопа С 12 есть 6 нейтронов и 6 протонов. С 13 имеет 7 нейтронов. В ядре изотопа С 12 восемь нейтронов и 6 протонов.

Физические свойства изотопов различны, но они обладают одинаковыми химическими свойствами. Обычно большая часть атомов элемента (вещества, состоящего из атомов одного вида) принадлежит к одному изотопу, а другие изотопы встречаются в меньших количествах.

Молекулы

Атомы редко встречаются и свободном состоянии. Как правило, они связываются друг с другом и образуют молекулы либо другие, более массивные структуры. Молекула - это мельчайшая частица вещества, которая может существовать самостоятельно. Она состоит из атомов, удерживающихся вместе при помощи связей. Например, у молекулы два атома связанны с атомом кислорода. Атомы удерживаются вместе благодаря зарядам частиц, из которых они состоят. Описывая строение молекул, ученые прибегают к помощи моделей . Как правило, они пользуются структурными и пространственными моделями. Структурные модели представляют связи, удерживающие атомы вместе, в виде палочек. В пространственных моделях атомы плотно соединены друг с другом. Конечно, модель не похожа на настоящую молекулу. Модели строятся для того, что­бы показать, из каких атомов та или иная молекула состоит.

Химические формулы

Химическая формула вещества показывает, сколько атомов каких элементов входит в состав одной молекулы. Каждый атом обозначается символом. Как правило, в качестве символа выбирается первая буква английского, латинского или арабского названия элемента. Например, молекула углекислою газа состоит из двух атомов кислорода и одного атома углерода, поэтому формула угле­кислого газа СО 2 . Двойка Атомы обозначает число атомов кислорода в молекуле.

Этот опыт продемонстрирует вам, что молекулы вещества удерживают­ся вместе силами притяжения. На­полните стакан водой до краев. Осторожно опустите в стакан несколько монет. Вы увидите, что над краями стакана приподнялся водяной купол. , притягивающая молекулы воды друг к другу, может удержать некоторое количество воды над краями стакана. Эта сила называется силой поверхностного натяжения .

Все тела, которые нас окружают, состоят из атомов. Атомы, в свою очередь, собираются в молекулу. Именно благодаря различию в молекулярном строении, можно говорить об отличных друг от друга веществах, опираясь на их свойства и параметры. Молекулы и атомы всегда находятся в состоянии динамики. Двигаясь, они все же не разбегаются в разные стороны, а удерживаются в определенной структуре, чем мы обязаны существованию такого огромного разнообразия веществ во всем окружающем нас мире. Что же это за частички и каковы их свойства?

Общие понятия

Если отталкиваться от теории квантовой механики, то молекула состоит не из атомов, а их ядер и электронов, которые постоянно взаимодействуют между собой.

Для некоторых веществ молекула - это наименьшая частица, имеющая состав и химические свойства самой субстанции. Так, свойства молекул с точки зрения химии определяются ее и составом. Но только для веществ с молекулярным строением работает правило: химические и молекул одинаковы. Для некоторых полимеров, например, этилена и полиэтилена, состав не соответствует молекулярному.

Известно, что свойства молекул определяются не только количеством атомов, их типом, но и конфигурацией, порядком соединения. Молекула - это сложная архитектурная постройка, где каждый элемент стоит на своем месте и имеет своих конкретных соседей. Атомная структура может быть более или менее жесткой. Каждый атом совершает колебание относительно своего равновесного положения.

Конфигурация и параметры

Бывает, что некоторые части молекулы совершают вращение по отношению к другим частям. Так, в процессе теплового движения свободная молекула обретает причудливые формы (конфигурации).

В основном свойства молекул определяются связью (ее типом) между атомами и архитектурой самой молекулы (структурой, формой). Таким образом, в первую очередь общая химическая теория рассматривает химические связи и основывается на свойствах атомов.

При сильно выраженной полярности свойства молекул трудно описать двух- или трехконстантными корреляциями, которые отлично подходят для неполярных молекул. Поэтому был введен дополнительный параметр с дипольным моментом. Но такой способ не всегда успешен, так как полярные молекулы имеют индивидуальные характеристики. Также были предложены параметры для учета квантовых эффектов, имеющие важность при низких температурах.

Что мы знаем о молекуле самого распространенного вещества на Земле?

Из всех веществ на нашей планете, самое распространенное - это вода. Она, в прямом смысле, обеспечивает жизнь всему сущему на Земле. Только вирусы могут без нее обойтись, остальные живые структуры в своем составе по большей части имеют воду. Какие свойства молекулы воды, характерные только ей, используются в хозяйственной жизни человека и живой природе Земли?

Ведь это поистине уникальная субстанция! Набором свойств, присущих воде, не может похвастаться больше ни одно вещество.

Вода — это основной растворитель в природе. Все реакции, протекающие в живых организмах, так или иначе происходят в водной среде. То есть вещества вступают в реакции, находясь в растворенном состоянии.

Вода обладает отличной теплоемкостью, но низкой теплопроводностью. Благодаря таким свойствам мы можем использовать ее в качестве транспортировки тепла. Этот принцип входит в механизм охлаждения большого числа организмов. В атомной энергетике свойства молекулы воды послужили поводом для использования этого вещества в качестве теплоносителя. Помимо возможности быть реактивной средой для других веществ, вода сама может вступать в реакции: фотолиз, гидратацию и другие.

Природная чистая вода - это жидкость, не имеющая запаха, цвета и вкуса. Но на толщине слоя, большем чем 2 метра, цвет становится голубоватым.

Вся молекула воды - это диполь (два разноименных полюса). Именно дипольная структура в основном определяет необычные свойства этого вещества. Молекула воды является диамагнетиком.

Еще одним интересным свойством обладает талая вода: ее молекула приобретает строение золотой пропорции, а структура вещества - пропорции золотого сечения. Многие свойства, которыми обладает молекула воды, установлены с помощью анализа поглощения и испускания полосатых спектров в газовой фазе.

Естествознание и молекулярные свойства

Все вещества, кроме химических, имеют физические свойства молекул, входящих в их структуру.

В физической науке понятие молекул используют для объяснения свойств твердых тел, жидкостей и газов. Способность всех веществ к диффузии, их вязкость, теплопроводность и другие свойства определяются подвижностью молекул. Когда французский ученый-физик Жан Перрен изучал броуновское движение, он экспериментально доказал существование молекул. Все живые организмы существуют благодаря тонко сбалансированному внутреннему взаимодействию в структуре. Все химические и физические свойства веществ имеют фундаментальное значение для естествознания. Развитие физики, химии, биологии и молекулярной физики послужило возникновению такой науки, как молекулярная биология, исследующая основные явления в жизни.

Используя статистическую термодинамику, физические свойства молекул, которые определяют методами молекулярной спектроскопии, в физической химии определяют веществ, необходимые для расчета химических равновесий и скоростей его установления.

Чем отличаются свойства атомов и молекул между собой?

Прежде всего, атомы не встречаются в свободном состоянии.

У молекул оптические спектры более богаты. Это связано с меньшей симметрией системы и с появлением возможности новых вращений и колебаний ядер. У молекулы суммарная энергия складывается из трех энергий, отличных по порядку величин составляющих:

  • электронной оболочки (оптическое или ультрафиолетовое излучение);
  • колебания ядер (инфракрасная часть спектра);
  • вращения молекулы в целом (радиочастотный диапазон).

Атомы излучают характерные а молекулы - полосатые, состоящие из множества близко расположенных линий.

Спектральный анализ

Оптические, электрические, магнитные и другие свойства молекулы определяются еще и связью с Данные о состояниях молекул и вероятном переходе между ними показывают молекулярные спектры.

Переходы (электронные) в молекулах показывают химические связи и структуру их электронных оболочек. Спектры, имеющие большее количество связей, имеют длинноволновые полосы поглощения, попадающие в видимую область. Если вещество построено из таких молекул, оно имеет характерную окраску. Это все

Свойства молекул одной и той же субстанции являются одинаковыми во всех агрегатных состояниях. Это значит, что у одних и тех же веществ свойства молекул жидких, газообразных субстанций не отличаются от свойств твердого. Молекула одного вещества всегда имеет одинаковую структуру, независимо от агрегатного состояния самого вещества.

Электрические характеристики

То, как вещество ведет себя в электрическом поле, определяется электрическими характеристиками молекул: поляризуемостью и постоянным дипольным моментом.

Дипольный момент - это электрическая асимметрия молекулы. У молекул, которые имеют центр симметрии, как H 2 , нет постоянного дипольного момента. Способность электронной оболочки молекулы перемещаться под воздействием электрического поля, в результате которого в ней образуется наведенный дипольный момент, - это поляризуемость. Чтобы найти значение поляризуемости и дипольного момента, необходимо измерить диэлектрическую проницаемость.

Поведение в переменном электрическом поле световой волны характеризуют оптические свойства вещества, которые определяются поляризуемостью молекулы этой субстанции. Непосредственно с поляризуемостью связаны: рассеяние, преломление, оптическая активность и другие явления молекулярной оптики.

Часто можно услышать вопрос: «От чего, кроме молекул, зависят свойства вещества?» Ответ на него достаточно прост.

Свойства веществ, кроме изометрии и кристаллической структуры, определяются температурой окружающей среды, самой субстанции, давлением, наличием примесей.

Химия молекул

До формирования такой науки, как квантовая механика, природа химических связей в молекулах была нераскрытой тайной. Классическая физика объяснить направленность и насыщаемость валентных связей не могла. После создания базовых теоретических сведений о химической связи (1927 г.) на примере простейшей молекулы Н2, теория и методы расчёта стали постепенно совершенствоваться. К примеру, на основе широкого применения метода молекулярных орбиталей, квантовой химии, стало возможным вычислять межатомные расстояния, энергию молекул и химических связей, распределение электронной плотности и других данных, которые вполне совпадали с экспериментальными.

Вещества с одинаковым составом, но разным химическим строением и разными свойствами, называются структурными изомерами. У них разные структурные формулы, но одинаковые молекулярные.

Известны различные типы структурной изомерии. Различия заключаются в строении углеродного скелета, положении функциональной группы или положении кратной связи. Кроме того, еще существуют пространственные изомеры, у которых свойства молекулы вещества характеризуются одинаковым составом и химическим строением. Поэтому и структурные, и молекулярные формулы у них одинаковые. Отличия заключаются в пространственной форме молекулы. Для изображения разных пространственных изомеров используют специальные формулы.

Есть соединения, которые называются гомологами. Они похожи по строению и свойствам, но отличаются по составу на одну или несколько групп СН2. Все вещества, похожие по строению и свойствам, объединены в гомологические ряды. Изучив свойства одного гомолога, можно рассуждать о любом другом из них. Совокупность гомологов - это гомологический ряд.

При преобразованиях структур вещества химические свойства молекул резко меняются. Примером служат даже простейшие соединения: метан, соединяясь даже с одним атомом кислорода, становится ядовитой жидкостью с названием метанол (метиловый спирт - СН3ОН). Соответственно, его химическая комплементарность и действие на живые организмы становятся другими. Аналогичные, но более сложные изменения, происходят при модификации структур биомолекул.

Химические молекулярные свойства сильно зависят от строения и свойств молекул: от в ней и геометрии самой молекулы. Особенно это работает в биологически активных соединениях. Какая конкурирующая реакция окажется преобладающей, часто определяется только пространственными факторами, зависящими, в свою очередь, от исходных молекул (их конфигурации). Одна молекула, имеющая «неудобную» конфигурацию, вообще не вступит в реакцию, а другая, с таким же химическим составом, но другой геометрией, может среагировать на реакцию мгновенно.

Большое число биологических процессов, наблюдающихся при росте и размножении, связано с геометрическими соотношениями между продуктами реакции и исходными веществами. К сведению: действие немалого количества новых лекарств основывается на аналогичном строении молекул какого-либо соединения, вредного с биологической точки зрения для человеческого организма. Лекарство занимает место вредоносной молекулы и затрудняет ее действие.

С помощью химических формул выражают состав и свойства молекул разных веществ. На основании молекулярной массы, устанавливается атомное соотношение и составляется эмпирическая формула.

Геометрия

Определение геометрической структуры молекулы производится с учетом равновесного расположения атомных ядер. От расстояния между ядрами атомов зависит энергия взаимодействия атомов. При очень больших расстояниях эта энергия нулевая. При сближении атомов начинает формироваться химическая связь. Тогда атомы сильно притягиваются друг к другу.

Если наблюдается слабое притяжение, то образование химической связи при этом не обязательно. Если атомы начинают сближаться на более близкие расстояния, между ядрами начинают действовать электростатические силы отталкивания. Препятствием для сильного сближения атомов является несовместимость их внутренних электронных оболочек.

Размеры

Невооруженным глазом увидеть молекулы невозможно. Они так малы, что даже микроскоп с 1000-кратным увеличением нам не поможет их разглядеть. Биологи наблюдают бактерии размером 0,001 мм. Но молекулы в сотни и тысячи раз меньше их.

Сегодня строение молекул некой субстанции определяют дифракционными методами: дифракцией нейтронов, рентгеноструктурным анализом. Также существует колебательная спектроскопия и электронный парамагнитный метод. Выбор метода зависит от типа вещества и его состояния.

Размер молекулы - это условная величина, если учитывать электронную оболочку. Дело в расстояниях электронов от атомных ядер. Чем они больше, тем вероятность найти электроны молекулы меньше. На практике размер молекул можно определить, учитывая равновесное расстояние. Это тот промежуток, на который сами молекулы могут сблизиться при плотной упаковке в молекулярном кристалле и в жидкости.

Большие расстояния располагают молекулы к притяжению, а малые, наоборот, к отталкиванию. Поэтому рентгеноструктурный анализ молекулярных кристаллов помогает найти размеры молекулы. Используя коэффициент диффузии, теплопроводности и вязкости газов, а также плотности вещества в конденсированном состоянии, можно определить порядок величины молекулярных размеров.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «strizhmoscow.ru» — Все об устройство автомобиля. Информационный портал