По полученным данным строим кривую титрования слабой кислоты сильным основанием.

Химия титрование. Титриметрический анализ Химическое титрование

Классификация методов титриметрического а

1. Классификация методов титриметрического анализа

В соответствии с этим, прежде чем переходить к рассмотрению отдельных методов титриметрического а, остановимся на измерении объемов, расчете концентраций и приготовлении титрованных ов, а также на вычислениях при титриметрических определениях.

2. Сущность титриметрического анализа

В титриметрическом (объемном) е количественное определение химических веществ осуществляется чаще всего путем точного измерения объемов ов двух веществ, вступающих между собой в реакцию.

Под титром обычно понимают число граммов или миллиграммов енного вещества, содержащееся в 1 мл а. Например, выражение «титр H2SO4 равен 0,0049 г/мл» означает, что каждый миллилитр данного а серной кислоты содержит 0,0049 г H2SO4. Титр обозначается буквой T с указанием формулы соответствующего вещества. Так, в данном случае; Th2So4 =° = 0,0049 г/мл.

Отсчитав по бюретке израсходованный на объем а реагента и зная его титр, перемножают эти величины и получают израсходованное на реакцию количество реагента (в граммах). Отсюда по уравнению реакции уже нетрудно вычислить количество определяемого вещества в исследуемом е, а если известен объем последнего, то и .

Сопоставление титриметрического а с гравиметрическим показывает, что вместо длительных и кропотливых операций: осаждения (с последующим созреванием осадка), фильтрования, промывания, прокаливания пустого тигля и тигля с осадком и т.д. при титриметрическом е проводят всего одну операцию - , которое при некотором навыке аналитика занимает несколько минут.

Точность титриметрических определений обычно немного меньше точности гравиметрических, так как взвешивание на аналитических весах несколько точнее измерения объемов бюреткой. Однако при правильной работе разница настолько невелика, что с нею. в большинстве случаев можно не считаться. Поэтому там, где возможно, стараются вести определение более быстрыми титриметрическими методами.

Однако для того чтобы та или иная могла служить основой для титрования, она должна удовлетворять ряду требований.

3. Нормальность растворов. Грамм-эквивалент

Из этого определения видно, что понятие «нормальность а» тесно связано с понятием «грамм-эквивалент», являющимся одним из важнейших понятий титриметрического а. Поэтому остановимся на нем подробнее.

Грамм-эквивалентом (г-экв) какого-либо вещества называется количество граммов его, химически равноценное (эквивалентное) одному грамм-атому (или грамм-иону) водорода в данной реакции.

Для нахождения грамм-эквивалента нужно написать уравнение реакции и вычислить, сколько граммов данного вещества отвечает в нем 1 грамм-атому или 1 грамм-иону водорода. Например, в уравнениях:

HCl+ KOH - KCl+ H2O

CH3COOH + NaOH - CH5COONa + H2O

один грамм-эквивалент кислоты равняется одной грамм-молекуле- моль (36,46 г) HCl и одной грамм-молекуле CH3COOH (60,05 г), так как именно эти количества указанных кислот соответствуют при реакции одному грамм-иону водорода, взаимодействующего с ионами гидроксила щелочи.

Соответственно грамм-молекулы H2SO4 и H3PO4 при х:

H2SO1 + 2NaOH - Na2SO4 + 2H2O H3PO4+ 3NaOH -> Na3PO4+ 3H2O

отвечают двум (H2SO4) и трем (H3PO4) грамм-ионам водорода. Следовательно, грамм-эквивалент H2SO4 равен 1/2 грамм-молекулы (49,04 г), a H3PO4 - 1/3 грамм-молекулы (32,66 г).

Как известно, молекулы двух- и многоосновных кислот ионизируют ступенчато и могут участвовать в х не всеми ионами водорода, а только частью их. Понятно, что и величины грамм-эквивалентов их должны быть в этих случаях иными, чем Для приведенных выше уравнений.

4. Кислотно-основное титрование

методу кислотно-основного титрования (нейтрализация) относят все определения, в основе которых лежит

H + + ОН - -> H2O

По этому методу можно, пользуясь титрованным ом какой-либо кислоты, проводить количественное определение щелочей (ацидиметрия) или, пользуясь титрованным ом щелочи, количественно определять кислоты (алкалиметрия) *.

При помощи этого метода проводят ряд других определений, например определение некоторых солей, имеющих, подобно Na2CO3 и Na2B4O7, сильнощелочную реакцию вследствие гидролиза и потому титрующихся кислотами, определение жесткости воды, определение солей аммония, определение азота в органических соединениях и т. д.

Br- + Ag+ -> AgBr^

* Как будет показано позже, при рассмотрении титрования с внешними индикаторами ошибку, связанную с отбором проб, можно сделать исчезающе малой. Метод равного помутнения, предложенный в 1832 г. Гей-Люссаком, t явился одним из первых методов титриметрического а. Впоследствии он был использован для весьма точного определения атомных весов галогенов и серебра.

По мере того как все больше и больше I- связывается Ag+, частицы AgI постепенно теряют адсорбированные ими 1_- , и заряд их уменьшается. В конце концов заряд уменьшается настолько, что происходит частиц и их в виде крупных творожистых хлопьев. при этом совершенно осветляется. Этот момент, называемый точкой просветления, в некоторой степени зависит от степени разбавления а иодида и от интенсивности перемешивания а при титровании.



Методы с применением индикаторов

Наиболее часто при аргентометрическом титровании пользуются в качестве индикаторов ами хромата калия K2CrO4 (в методе Мора) или железо-аммонийных квасцов NH4Fe(SO4J2 (в методе Фольга рда).

Применение K2CrO4 в качестве индикатора основано на способности CrO4- давать с Ag+ кирпично-красного цвета Ag2CrO4, который в определенных условиях начинает выпадать лишь после того, как определяемые С1~- будут практически полностью осаждены в виде AgCl.

Причина этого заключается в различии величин имости хлорида и хромата серебра.

Таким образом, произведение имости AgCl достигается раньше, т. е. при меньшей концентрации Ag+-ИOHOB (1O-9 г-ион/л), чем в случае Ag2CrO4 (1,05 1O-5 г-ион/л).

Поэтому и осаждаться должен первым именно AgCl. Поскольку, однако, произведение остается все время (приблизительно) постоянным, по мере осаждения Cl- в виде AgCl Ag+ в е должна постепенно повышаться *. При этом в конце концов окажется достигнутой и та Ag+-HOHOB, которая необходима для того, чтобы началось Ag2CrO4, 1,05- Ю-5 г-ион/л.

С этого момента наряду с AgCl начнет осаждаться также и Ag2CrO4, и взмученный в жидкости приобретает красновато-бурую окраску, при получении которой заканчивают .

Таким образом, в указанных условиях выпадение осадка Ag2CrO4 действительно начинается только после практически полного осаждения С1--ионов в виде AgCl.

Найденной выше концентрации остающихся в е С1--ионов отвечает величина рС1 =-Ig 1,05-10-6 « 5,03, лежащая внутри области скачка на кривой титрования (4-6). Это свидетельствует о. том, что данный индикатор при концентрации его ~ Ю-2 M дает возможность достаточно точно фиксировать точку эквивалентности при титровании.

Метод Мора применяют для определения серебра, хлоридов и бромидов (определять иодиды и роданиды этим методом нельзя, так как результаты сильно искажаются вследствие явлений адсорбции).

Что бы ни определялось по методу Мора - соли галогенов или соли серебра, порядок титрования должен быть всегда такой же, как при установлении титра а AgNO3. Другими словами, всегда нужно к измеренному объему а соли галогена приливать соли серебра из бюретки, так как только в этом. случае получается резкое изменение окраски в конце титрования.

Нужно, далее, иметь в виду, что метод Мора применим только для титрования в нейтральной или слабощелочной среде (рН 6,5-10), так как Ag2CrO4 раствор а, подкисленного HNO3, AgNO3. ы солей серебра стандартным остающихся в
Br- + Ag+ (избыток) -> AgBr + Ag+ (остаток)

Так же определяются и хлориды.

Из сказанного ясно, что при рассматриваемом титровании добиваться получения устойчивой окраски не следует, нужно только учитывать, что до точки эквивалентности появляющаяся окраска исчезает при перемешивании очень быстро. После этой точки окраска начинает исчезать сравнительно медленно.

Конец титрования можно сделать более отчетливым, прибавляя к титруемому у 1-2 мл нитробензола C6H5NO2, четыреххлористого углерода CCl4 или хлороформа CHCl3. Эти вещества, адсорбируясь на поверхности осадка AgCl, сильно замедляют реакцию между ним и роданидными комплексами железа.
AgCl оказывается отделенным от а и помешать титрованию не может.

На практике в качестве индикатора применяют насыщенный железо-аммонийных квасцов NH4Fe(SO4J2 12H2O с небольшим количеством концентрированной HNO3 для подавления гидролиза, вследствие которого приобретает бурую окраску.

В отличие от метода Мора в этом методе присутствие кислоты не только не вредит титрованию, но, наоборот, способствует получению более точных результатов.

Титриметрический метод анализа основан на измерении объема раствора известной концентрации, вступившего в реакцию с исследуемым веществом. Для анализа пона...

От Masterweb

24.07.2018 03:00

Титриметрический метод анализа (титрование) позволяет провести объемный количественный анализ и находит широкое применение в химии. Его главное достоинство - разнообразие способов и методов, благодаря чему его можно использовать для решения разнообразных аналитических задач.

Принцип анализа

Титриметрический метод анализа основан на измерении объема раствора известной концентрации (титранта), вступившего в реакцию с исследуемым веществом.

Для анализа понадобится специальное оборудование, а именно, бюретка – тонкая стеклянная трубка с нанесенной градуировкой. Верхний конец этой трубки открыт, а на нижнем находится запорный кран. Прокалиброванную бюретку с помощью воронки заполняют титрантом до нулевой отметки. Анализ проводят до конечной точки титрования (КТТ), добавляя небольшое количество раствора из бюретки к исследуемому веществу. Конечную точку титрования идентифицируют по изменению цвета индикатора или какого-либо физико-химического свойства.

Конечный результат рассчитывается по затраченному объему титранта и выражается в титре (Т) – массе вещества, приходящейся на 1 мл раствора (г/мл).

Обоснование процесса

Титриметрический метод количественного анализа дает точные результаты, поскольку вещества реагируют друг с другом в эквивалентных количествах. Это означает, что произведение их объема и количества тождественны друг другу: C1V1 = C2V2. Из этого уравнения легко найти неизвестное значение С2, если остальные параметры задаются самостоятельно (С1, V2) и устанавливаются в ходе анализа (V1).

Обнаружение конечной точки титрования

Поскольку своевременное фиксирование конца титрования – наиболее важная часть анализа, нужно правильно подобрать его способы. Наиболее удобным считается использование цветных или флуоресцентных индикаторов, но можно применять и инструментальные методы – потенциометрию, амперометрию, фотометрию.


Окончательный выбор способа обнаружения КТТ зависит от требуемой точности и селективности определения, а также его скорости и возможности автоматизации. Особенно актуально это для мутных и окрашенных растворов, а также агрессивных сред.

Требования к реакции титрования

Чтобы титриметрический метод анализа дал верный результат, нужно правильно подобрать реакцию, которая будет лежать в его основе. Требования к ней следующие:

  • стехиометричность;
  • высокая скорость протекания;
  • высокая константа равновесия;
  • наличие достоверного способа фиксирования экспериментального конца титрования.

Подходящие реакции могут принадлежать любому типу.

Виды анализа

Классификация методов титриметрического анализа основана на типе реакции. По этому признаку различают следующие методы титрования:

  • кислотно-основное;
  • окислительно-восстановительное;
  • комплексометрическое;
  • осадительное.

В основе каждого вида лежит свой тип реакции, подбираются специфические титранты, в зависимости от которых в анализе выделяют подгруппы методов.

Кислотно-основное титрование

Титриметрический метод анализа с использованием реакции взаимодействия гидроксония с гидроксид-ионом (Н3О+ + ОН- = Н2О) называется кислотно-основным. Если известное вещество в растворе образует протон, что характерно для кислот, метод относится к подгруппе ацидиметрия. Здесь в качестве титранта обычно используют устойчивую соляную кислоту HCl.

Если титрант образует гидроксид-ион, метод называется алкалиметрией. Используемые вещества – щелочи, например, NaOH, или соли, полученные взаимодействием сильного основания со слабой кислотой, как Na2CO3.

Индикаторы при этом используется цветные. В качестве них выступают слабые органические соединения – кислоты и основания, у которых различаются структура и окраска протонированных и не протонированных форм. Чаще всего в кислотно-основном титровании используется одноцветный индикатор фенолфталеин (прозрачный раствор в щелочной среде становится малиновым) и двухцветный метиловый оранжевый (красное вещество становится желтым в кислой среде).


Их широкое применение связано с высоким светопоглощением, благодаря которому их окраска хорошо заметна невооруженным глазом, и контрастности и узкой области перехода цвета.

Окислительно-восстановительное титрование

Окислительно-восстановительный титриметрический анализ – это метод количественного анализа, основанный на изменении соотношения концентраций окисленной и восстановленной форм: aOx1 + bRed2 = aRed1 + bOx2.

Делится метод на следующие подгруппы:

  • перманганатометрия (титрант – KMnO4);
  • иодометрия (I2);
  • дихроматометрия (K2Cr2O7);
  • броматометрия (KBrO3);
  • иодатометрия (KIO3);
  • цериметрия (Ce(SO4)2);
  • ванадатометрия (NH4VO3);
  • титанометрия (TiCl3);
  • хромометрия (CrCl2);
  • аскорбинометрия (С6Н8ОН).

В ряде случаев роль индикатора может играть реагент, участвующий в реакции и меняющий свою окраску с приобретением окисленной или восстановленной формы. Но также применяют специфические индикаторы, например:

  • при определении йода используют крахмал, который образует темно-синее соединение с I3-ионами;
  • при титровании трехвалентного железа применяют тиоционат-ионы, образующие с металлом комплексы, окрашенные в ярко-красный цвет.

Кроме того, есть специальные редокс-индикаторы – органические соединения, имеющие разную окраску окисленной и восстановленной форм.

Комплексометрическое титрование

Если кратко, титриметрический метод анализа, называемый комплексометрическим, основан на взаимодействии двух веществ с образованием комплекса: M + L = ML. Если используются соли ртути, например, Hg(NO3)2, метод называется меркуриметрией, если этилендиаминтетрауксусная кислота (ЭДТА) – комплексонометрией. В частности, с помощью последнего метода проводится титриметрический метод анализа воды, а именно, ее жесткости.

В комплексонометрии используют прозрачные металлоиндикаторы, приобретающие окраску при образовании комплексов с ионами металлов. Например, при титровании солей трехвалентного железа ЭДТА в качестве индикатора используют прозрачную сульфосалициловую кислоту. Она окрашивает раствор в красный цвет при образовании комплекса с железом.


Однако чаще металлоиндикаторы имеют собственный цвет, который меняют в зависимости от концентрации иона металла. В качестве таких индикаторов применяются многоосновные кислоты, образующие достаточно устойчивые комплексы с металлами, которые при этом быстро разрушаются при воздействии ЭДТА с контрастным изменением окраски.

Осадительное титрование

Титриметрический метод анализа, в основе которого лежит реакция взаимодействия двух веществ с образованием твердого соединения, выпадающего в осадок (М + Х = МХ↓), является осадительным. Он имеет ограниченное значение, так как обычно процессы осаждения протекают неколичественно и нестехиометрично. Но иногда он все-таки используется и имеет две подгруппы. Если в методе используются соли серебра, например, AgNO3, он называется аргентометрией, если соли ртути, Hg2(NO3)2, то меркурометрией.

Для обнаружения конечной точки титрования используют следующие способы:

  • метод Мора, в котором индикатором служит хромат-ион, образующий красно-кирпичный осадок с серебром;
  • метод Фольгарда, основанный на титровании раствора ионов серебра тиоцианатом калия в присутствии трехвалентного железа, образующего с титрантом красного комплекса в кислой среде;
  • метод Фаянса, предусматривающий титрование с адсорбционными индикаторами;
  • метод Гей-Люссака, в котором КТТ определяется по просветлению или помутнению раствора.

Последний метод в последнее время практически не используется.

Способы титрования

Титрование классифицируется не только по лежащей в основе реакции, но и по способу выполнения. По этому признаку выделяют следующие виды:

  • прямое;
  • обратное;
  • титрование заместителя.

Первый случай используют только в условиях идеального протекания реакции. Титрант при этом добавляют непосредственно к определяемому веществу. Так с помощью ЭДТА определяют магний, кальций, медь, железо и еще около 25 металлов. Но в других случаях чаще используют более сложные способы.

Обратное титрование

Идеальную реакцию удается подобрать не всегда. Чаще всего она медленно протекает, или для нее сложно подобрать способ фиксирования конечной точки титрования, или среди продуктов образуются летучие соединения, из-за чего определяемое вещество частично теряется. Преодолеть эти недостатки можно, используя метод обратного титрования. Для этого к определяемому веществу приливают большое количество титранта, чтобы реакция прошла до конца, а затем определяют, какое количество раствора осталось непрореагировавшим. Для этого остатки титранта от первой реакции (Т1) титруются другим раствором (Т2), и его количество определяется по разности произведений объемов и концентраций в двух реакциях: СТ1VT1-CT2VT2.

Применение титриметрического метода анализа обратным способом лежит в основе определения диоксида марганца. Его взаимодействие с сульфатом железа протекает очень медленно, поэтому соль берется в избытке и реакция ускоряется при помощи нагревания. Непрореагировавшее количество иона железа титруется дихроматом калия.


Титрование заместителя

Титрование заместителя используется в случае нестехиометричных или медленных реакций. Его суть в том, что для определяемого вещества подбирается стехиометричная реакция со вспомогательным соединением, после чего титрованию подвергают продукт взаимодействия.

Именно так поступают при определении дихромата. К нему добавляют иодид калия, в результате чего выделяется эквивалентное определяемому веществу количество йода, которое затем титруется тиосульфатом натрия.

Таким образом, титриметрический анализ позволяет определить количественное содержание широкого круга веществ. Зная их свойства и особенности протекания реакций, можно подобрать оптимальный метод и способ титрования, который даст результат с высокой степенью точности.

Улица Киевян, 16 0016 Армения, Ереван +374 11 233 255

Титриметрический анализ основан на точном измерении количества реактива, израсходованного на реакцию с определяемым веществом. Еще недавно этот вид анализа обычно называли объемным в связи с тем, что наиболее распространенным в практике способом измерения количества реактива являлось измерение объема раствора, израсходованного на реакцию. Сейчас под объемным анализом понимают совокупность методов, основанных на измерении объема жидкой, газовой или твердой фаз.

Название титриметрический связаго со словом титр, обозначающим концентрацию раствора. Титр показывает число граммов растворенного вещества в 1 мл раствора.

Титрованный, или стандартный, раствор - раствор, концентрация которого известна с высокой точностью. Титрование - прибавление титрованного раствора к анализируемому для определения точно эквивалентного количества. Титрующий раствор часто называют рабочим раствором или титрантом. Например, если кислота титруется щелочью, раствор щелочи называется титрантом. Момент титрования, когда количество добавленного титранта химически эквивалентно количеству титруемого вещества, называется точкой эквивалентности.

Реакции, применяемые в титриметрии, должны удовлетворять следующим основным требованиям:

1) реакция должна протекать количественно, т.е. константа равновесия реакции должна быть достаточно велика;

2) реакция должна протекать с большой скоростью;

3) реакция не должна осложняться протеканием побочных реакций;

4) должен существовать способ определения окончания реакции.

Если реакция не удовлетворяет хотя бы одному из этих требований, она не может быть использована в титриметрическом анализе.

В титриметрии различают прямое, обратное и косвенное титрование.

В методах прямого титрования определяемое вещество непосредственно реагирует с титрантом. Для проведения анализа этим методом достаточно одного рабочего раствора.

В методах обратного титрования (или, как их еще называют, методах титрования по остатку) используются два титрованных рабочих раствора: основной и вспомогательный. Широко известно, например, обратное титрование хлорид-иона в кислых растворах. К анализируемому раствору хлорида сначала добавляют заведомый избыток титрованного раствора нитрата серебра (основного рабочего раствора). При этом происходит реакция образования малорастворимого хлорида серебра.

Не вступившее в реакцию избыточное количество вещества AgNO 3 оттитровывают раствором тиоцианата аммония (вспомогательного рабочего раствора).


Третьим основным видом титриметрических определений является титрование заместителя, или титрование по замещению (косвенное титрование). В этом методе к определяемому веществу добавляют специальный реагент, вступающий с ним в реакцию. Один из продуктов взаимодействия затем оттитровывают рабочим раствором. Например, при иодометрическом определении меди к анализируемому раствору добавляют заведомый избыток KI. Происходит реакция 2Cu 2+ +4I - =2CuI+ I 2 . Выделившийся иод оттитровывают тиосульфатом натрия.

Существует еще так называемое реверсивное титрование, при котором стандартный раствор реагента титруют анализируемым раствором.

Расчет результатов титриметрического анализа основан на принципе эквивалентности, в соответствии с которым вещества реагируют между собой в эквивалентных количествах.

Во избежание каких-либо противоречий рекомендуется все реакции кислотно-основного взаимодействия привести к единой общей основе, которой может быть ион водорода. В окислительно-восстановительных реакциях количество реагирующего вещества удобно связать с числом электронов, принимаемых или отдаваемых веществом в данной полуреакции. Это позволяет дать следующее определение.

Эквивалентом называется некая реальная или условная частица, которая может присоединять, высвобождать или быть каким-либо другим образцом эквивалента одному иону водорода в кислотно-основных реакциях или одному электрону в окислительно-восстановительных реакциях.

При использовании термина «эквивалент» всегда необходимо указывать, к какой конкретной реакции он относится. Эквивалент данного вещества являются не постоянными величинами, а зависят от стехиометрии реакции, в которой они принимают участие.

В титриметрическом анализе используют реакции различного типа: - кислотно-основного взаимодействия, комплексообразования и т.д., удовлетворяющие тем требованиям, которые предъявляются к титриметрическим реакциям. Тип реакции, протекающей при титровании положен в основу классификации титриметрических методов анализа. Обычно выделяют следующие методы титриметрического анализа.

1. Методы кислотно-основного взаимодействия связаны с процессом передачи протона:

2. Методы комплексообразования используют реакции образования координационных соединений:

3. Методы осаждения основаны на реакциях образования малорастворимых соединений:

4. Методы окисления - восстановления объединяют многочисленную группу окислительно-восстановительных реакций:

Отдельные титриметрические методы получили название по типу основной реакции, протекающей при титровании или по названию титранта (например, в аргентометрических методах титрантом является раствор AgNO 3 , в перманганатометрических - раствор КМп0 4 и т.д.).

Методы титрования характеризуются высокой точностью: погрешность определений составляет 0,1 - 0,3%. Рабочие растворы устойчивы. Для индикации точки эквивалентности имеется набор разнообразных индикаторов. Среди титриметрических методов, основанных на реакциях комплексообразования, наибольшее значение имеют реакции с применением комплексонов. Устойчивые координационные соединения с комплексонами образуют почти все катионы, поэтому методы комплексонометрии универсальны и применимы к анализу широкого круга разнообразных объектов.

Метод кислотно-основного титрования основан на реакциях взаимодей­ствия между кислотами и основаниями, то есть на реакции нейтрализации:

Н + + ОН - ↔ Н 2 О

Рабочими растворами метода являются растворы сильных кислот (HCl, H 2 S, НNОз и др.) или сильных оснований (NaOH, КОН, Ва(ОН) 2 и др.). В зависимости от титранта метод кислотно-основного титрования подразделяют на ацидиметрию , если титрантом является раствор кислоты, и алкалиметрию , если титрантом является раствор основания.

Рабочие растворы в основном готовят как вторичные стандартные растворы, поскольку исходные для их приготовления вещества не являются стандaртными, а затем их стандартизуют по стандартным веществам или стандартным растворам. Например: растворы кислот можно стандартизовать по стандартным веществам - натрия тетраборату Na 2 B 4 О 7 ∙10Н 2 О, натрия карбонату Nа 2 СО 3 ∙10Н 2 О или по стандартным растворам NaOH, КОН; а растворы оснований - по щавелевой кислоте Н 2 С 2 О 4 ∙Н 2 О, янтарной кислоте Н 2 С 4 Н 4 О 4 или по стандартным растворам HCl, H 2 SO 4 , НNО 3 .

Точка эквивалентности и конечная точка титрования . Согласно правилу эквивалентности титрование необходимо продолжать до тех пор, пока количество прибавленного реагента не станет эквивалентным содержанию определяемого вещества. Наступающий в процессе титрования момент, когда количecтвo стандартного раствора реагента (титранта) становится теоретически строго эквивалентным количеству определяемого вещества согласно определенному уравнению химической реакции, называют точкой эквивалентности .

Точку эквивалентности устанавливают различными способами, например по изменению окраски индикатора, прибавляемого в титруемый раствор. Момент, при котором происходит наблюдаемое изменение цвета индикатора, называют конечной точкой титрования . Очень часто конечная точка титрования не совсем совпадает с точкой эквивалентности. Как правило, они отличаются друг от друга не более чем на 0,02-0,04 мл (1-2 капли) титранта. Это то количество титранта, которое необходимо для взаимодейcтвия с индикатором.

Реакция должна быть практически необратимой, т.е. заканчиваться полным расходованием исходных веществ и иметь большое значение константы равновесия.

При этом не должно образовываться никаких побочных продуктов как вследствие взаимодействия исходных веществ с окружающей средой (например, с кислородом или углекислым газом, содержащимися в воздухе), так и в результате протекания между ними нескольких параллельных реакций.

В реакциях должна точно и быстро фиксироваться точка эквивалентности.

2. Реакция между веществами рабочего и исследуемого растворов должна протекать в строгом стехиометрическом соотношении, соответствующем её химическому уравнению.

4. Реакция должна протекать с достаточной скоростью, т.е. за малый отрезок времени. Наиболее оптимальным в этом случае является время, необходимое для перемешивания одной добавленной капли титранта с объёмом титруемого раствора, т.е. 1-3 секунды.

Если реакция осуществляется медленно, то сложно точно определить наступление точки эквивалентности. При этом также теряется основное достоинство титриметрии – быстрота выполнения анализа и получения результата.

Если химическая реакция не удовлетворяет хотя бы одному из вышеперечисленных требований, она не может быть использована в титриметрическом анализе. Но если ей невозможно найти замену, то такую реакцию пытаются «приспособить» для применения в титриметрии. Например, многие окислительно-восстановительные реакции при обычных условиях протекают медленно, являются обратимыми и многонаправленными, т.е. исходные вещества в них расходуются одновременно по нескольким направлениям. Для устранения данных недостатков изменяют условия проведения реакции. Например, осуществляют её при нагревании или в присутствии катализаторов (это позволяет существенно увеличить скорость реакции), а также в определённой среде: кислой, нейтральной или щелочной (это позволяет устранить обратимость и многонаправленность).

Следует, однако, подчеркнуть, что такое «приспособление» приводит к усложнению метода. Применение его целесообразно идти лишь тогда, когда неизвестна более удобная химическая реакция.

Различают три основных способа титрования: прямое, обратное, косвенное или заместительное.

При прямом титровании используют исследуемый и один рабочий растворы. В процессе определения к определённому точно измеренному объёму одного из них по каплям добавляют второй раствор до наступления точки эквивалентности.

Закон эквивалентов в этом случае может быть математически записан следующим образом:

N 1 V 1 = N 2 V 2


где V 1 и V 2 – объёмы израсходованных исследуемого и рабочего растворов, соответственно; N 1 и N 2 - молярные концентрации химических эквивалентов веществ исследуемого и рабочего растворов, соответственно.

Молярную концентрацию химического эквивалента вещества в исследуемом растворе рассчитывают по формуле:

При обратном титровании используют исследуемый и два рабочих раствора, один их которых является вспомогательным, а второй применяют для титрования.

В процессе анализа к определённому точно измеренному объёму исследуемого раствора одномоментно добавляют взятый в избытке фиксированный объём вспомогательного рабочего раствора. В результате протекания химической реакции вещество, присутствующее в исследуемом растворе, расходуется полностью. Не прореагировавший избыток вещества вспомогательного раствора титруется затем вторым рабочим раствором до наступления точки эквивалентности, например:

К 2 SO 3 + I 2 + H 2 O → K 2 SO 4 + 2HI

Исследуемый Вспомогательный

раствор рабочий раствор

I 2 + 2Na 2 S 2 O 3 → 2NaI + Na 2 S 4 O 6

Второй рабочий

Таким образом, вещество, присутствующее во вспомогательном рабочем растворе, реагирует как с веществом исследуемого раствора, так и с веществом второго рабочего раствора. Закон эквивалентов в этом случае математически может быть записан следующим образом:

N 2 V 2 = N 1 V 1 + N 3 V 3

где V 1 , V 2 , V 3 – израсходованные объёмы исследуемого, вспомогательного и второго рабочих растворов, соответственно; N 1 , N 2 , N 3 – молярные концентрации химических эквивалентов веществ в исследуемом, вспомогательном и во втором рабочих растворах, соответственно.

Молярную концентрацию химического эквивалента рассчитывают по формуле:

Обратное титрование в аналитической практике может называться иначе титрованием по остатку или с двумя титрантами.

Оно используется, если определяемое вещество не реагирует или реагируют медленно с веществом второго рабочего раствора, либо в реакции между ними невозможно определить точку эквивалентности.

При косвенном, или заместительном, титровании также используют исследуемый раствор и два рабочих раствора. В ходе анализа к точно измеренному объёму исследуемого раствора одномоментно добавляют нефиксированный заведомый избыток первого рабочего раствора. В результате протекающей реакции вещество исследуемого раствора полностью расходуется с образованием эквивалентного количества соответствующего продукта реакции, который затем титруется вторым рабочим раствором до наступления точки эквивалентности, например:

K 2 Cr 2 O 7 + 6KI + 7H 2 SO 4 = Cr 2 (SO 4) 3 + 3I 2 + 4K 2 SO 4 + 7H 2 O

исследуемый первый рабочий эквивалентное

раствор раствор кол-во продукта реакции

2Na 2 S 2 O 3 + I 2 = 2NaI + Na 2 S 4 O 6

второй рабочий

Таким образом, мы как бы замещаем определяемое вещество на другое, которое впоследствии и подвергаем анализу.

Так как количество вещества эквивалента образовавшегося продукта и количество вещества эквивалента в исследуемом растворе равны между собой, то молярную концентрацию химического эквивалента вещества в исследуемом растворе рассчитываем по такой же формуле, как и при прямом титровании.

Заместительное титрование применяют, когда непосредственное определение вещества в исследуемом растворе невозможно: отсутствует подходящий титрант, нельзя установить точку эквивалентности и т.п.

Лабораторная работа № 8

ТИТРИМЕТРИЧЕСКИЙ АНАЛИЗ

Цель работы: ознакомиться с основами титриметрического анализа, изучить основные методы и приёмы титрования.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1. Сущность титриметрического анализа . Основные понятия.

Титриметрический (объёмный) анализ является одним из важнейших видов количественного анализа. Его основными достоинствами являются точность, быстрота исполнения и возможность применения для определения самых разнообразных веществ. Определение содержания вещества в титриметрическом анализе осуществляется в результате проведения реакции точно известного количества одного вещества с неизвестным количеством другого, с последующим расчётом количества определяемого вещества по уравнению реакции. Реакция, которая при этом протекает должна быть стехиометрической, т. е. вещества должны реагировать строго количественно, согласно коэффициентам в уравнении. Только при соблюдении этого условия реакция может быть использована для количественного анализа.

Основной операцией титриметрического анализа является титрование – постепенное смешивание веществ до полного окончания реакции. Обычно в титриметрическом анализе используются растворы веществ. В ходе титрования раствор одного вещества постепенно приливается к раствору другого вещества до тех пор, пока вещества полностью не прореагируют. Раствор, который приливают, называется титрантом , раствор, к которому приливается титрант, называется титруемым раствором. Объём титруемого раствора, который подвергается титрованию, называется аликвотной частью или аликвотным объёмом.

Точкой эквивалентности называется момент, наступающий в ходе титрования, когда реагирующие вещества полностью прореагировали. В этот момент они находятся в эквивалентных количествах, т. е. достаточных для полного, без остатка, протекания реакции.

Для титрования применяются растворы с точно известной концентрацией, которые называются стандартными или титрованными . Различают несколько типов стандартных растворов.

Первичным стандартом называется раствор с точно известной концентрацией, приготовленный по точной навеске вещества. Вещество для приготовления первичного стандарта должно иметь определённый состав и быть определённой степени чистоты. Содержание в нём примесей не должно превышать установленных норм. Зачастую для приготовления стандартных растворов вещество подвергается дополнительной очистке. Перед взвешиванием вещество высушивается в эксикаторе над осушающим веществом или выдерживается при повышенной температуре. Навеску взвешивают на аналитических весах и растворяют в определённом объёме растворителя. Полученный стандартный раствор не должен изменять своих свойств при хранении. Стандартные растворы хранят в плотно закрытой посуде. При необходимости их предохраняют от попадания прямых солнечных лучей и воздействия высокой температуры. Стандартные растворы многих веществ (HCl, H2SO4, Na2B4O7 и др.) могут храниться годами без изменения концентрации.

Ввиду того, что подготовка вещества для приготовления стандартного раствора является длительным и трудоёмким процессом, химической промышленностью выпускаются т. наз. фиксаналы . Фиксанал представляет собой стеклянную ампулу, в которой запаяна определённая навеска вещества. Ампулу разбивают, и вещество количественно переносят в мерную колбу, доводя затем объём жидкости до метки. Применение фиксаналов значительно облегчает процесс и сокращает время приготовления стандартного раствора.

Некоторые вещества трудно получить в химически чистом виде (например, KMnO4). Из-за содержания примесей взять точную навеску вещества часто бывает невозможно. Кроме этого, растворы многих веществ при хранении изменяют свои свойства. Например, растворы щелочей способны поглощать углекислый газ из воздуха, в результате чего их концентрация со временем меняется. В этих случаях используют вторичные стандарты.

Вторичным стандартом называется раствор вещества с точно известной концентрацией, которая устанавливается по первичному стандарту. Вторичные стандарты (например, растворы KMnO4, NaOH и т. д.) хранятся при тех же условиях, что и первичные стандарты, но их концентрацию периодически проверяют по стандартным растворам так называемых установочных веществ.

2. Способы и виды титрования.

В процессе титрования аликвотная часть раствора отбирается обычно в колбу, затем к ней из бюретки малыми порциями приливается раствор титранта, до достижения точки эквивалентности. В точке эквивалентности измеряется объём титранта, израсходовавшийся на титрование раствора. Титрование может осуществляться несколькими способами.

Прямое титрование заключается в том, что раствор определяемого вещества А титруют стандартным раствором титранта В . Способом прямого титрования титруют растворы кислот, оснований, карбонатов и т. д.

При реверсивном титровании аликвотную часть стандартного раствора В титруют раствором определяемого вещества А . Реверсивное титрование применяется в том случае, если определяемое вещество неустойчиво при тех условиях, в которых производится титрование. Например, окисление нитритов перманганатом калия происходит в кислой среде.

NO2- + MnO2- + 6H+ ® NO3- + Mn2+ + 3H2O

Но сами нитриты в кислой среде неустойчивы.

2NaNO2 + H2SO4 ® Na2SO4 + 2HNO2

Поэтому стандартный раствор перманганата, подкисленный серной кислотой, титруют раствором нитрита, концентрацию которого хотят определить.

Обратное титрование применяют в тех случаях, когда прямое титрование не применимо: например, из-за очень низкого содержания определяемого вещества, невозможности определить точку эквивалентности, при медленном протекании реакции и т. д. В ходе обратного титрования к аликвотной части определяемого вещества А приливают точно измеренный объём стандартного раствора вещества В , взятый в избытке. Непрореагировавший избыток вещества В определяют титрованием стандартным раствором вспомогательного вещества С . По разности исходного количества вещества В и его количества, оставшегося после протекания реакции, определяют количество вещества В , вступившее в реакцию с веществом А , исходя из которого и рассчитывают содержание вещества А .

Косвенное титрование или титрование по заместителю. Основано на том, что титруют не само определяемое вещество, а продукт его реакции со вспомогательным веществом С .

Вещество D должно образовываться строго количественно по отношению к веществу А . Определив cодержание продукта реакции D титрованием стандартным раствором вещества В, по уравнению реакции рассчитывают содержание определяемого вещества А .

Реакции, которые используются в титриметрическом анализе, должны быть строго стехиометрическими, протекать достаточно быстро и по возможности при комнатной температуре. В зависимости от типа протекающей реакции различают:

Кислотно-основное титрование, в основе которого лежит реакция нейтрализации.

Окислительно-восстановительное титрование, основанное на окисчлительно-восстановительных реакциях.

Комплексонометрическое титрование, основанное на реакциях комплексообразования.

3. Кислотно-основное титрование.

В основе кислотно-основного титрования лежит реакция нейтрализации между кислотой и основанием. В результате реакции нейтрализации образуется соль и вода.

HAn + KtOH ® KtAn + H2O

Реакция нейтрализации протекает при комнатной температуре практически мгновенно. Кислотно-основное титрование применяется для определения кислот, оснований, а также многих солей слабых кислот: карбонатов, боратов, сульфитов, и т. д. При помощи данного метода можно титровать смеси различных кислот или оснований, определяя содержание каждого компонента в отдельности.

При титровании кислоты основанием или наоборот, происходит постепенное изменение кислотности среды, которое выражается водородным показателем рН. Вода представляет собой слабый электролит, который диссоциирует согласно уравнению.

Н2О ® Н+ + ОН-

Произведение концентрации ионов водорода на концентрацию ионов гидроксила есть величина постоянная, и называется ионное произведение воды.

https://pandia.ru/text/78/441/images/image002_110.gif" width="165" height="25 src="> (1)

В нейтральной среде концентрации водородных ионов и гидроксид-ионов равны и составляют 10-7м/л. Ионное произведение воды остаётся постоянным при добавлении в воду кислоты или основания. При добавлении кислоты увеличивается концентрация ионов водорода, что приводит к сдвигу равновесия диссоциации воды влево, в результате чего концентрация гидроксид-ионов уменьшается. Например, если = 10-3м./л., то = 10-11м./л. Ионное произведение воды останется постоянным.

Если увеличить концентрацию щёлочи, то концентрация гидроксид-ионов увеличится, а концентрация ионов водорода уменьшится, ионное произведение воды также останется постоянным. Например, = 10-2, = 10-12

Водородным показателем рН называется отрицательный десятичный логарифм концентрации ионов водорода.

рН = - lg . (2)

Исходя из уравнения (1) можно заключить, что в нейтральной среде рН = 7.

pН = - lg 10-7 = 7.

В кислой среде рН < 7, в щелочной рН > 7. Аналогично выводится формула для рОН из уравнения (1).

pОН = - lg = 14 – pH. (3)

В ходе кислотно-основного титования с каждой порцией приливаемого титранта изменяется рН раствора. В точке эквивалентности рН достигает определённого значения. В этот момент времени титрование необходимо прекратить и измерить объём титранта, пошедший на титрование. Для определения рН в точке эквивалентности строят кривую титрования – график зависимости рН раствора от объёма прибавляемого титранта. Кривую титрования можно построить экспериментально, измеряя рН в различные моменты титрования, или рассчитать теоретически, используя формулы (2) или (3). Для примера рассмотрим титрование сильной кислоты HCl сильным основанием NaOH.

Таблица 1. Титрование 100мл 0,1М раствора HCl 0,1М раствором NaOH.

nNaOH (моль)

nHCl (моль) вступившее в реакцию.

nHCl остающееся в растворе (моль)

1,00 10-2

1,00 10-2

По мере прибавления щёлочи к раствору кислоты, происходит уменьшение количества кислоты и рН раствора увеличивается. В точке эквивалентности кислота полностью нейтрализована щёлочью и рН = 7. Реакция раствора нейтральная. При дальнейшем добавлении щёлочи рН раствора определяется избыточным количеством NaOH. При добавлении 101 и 110мл. раствора NaOH избыток щёлочи составляет соответственно 1 и 10 мл. Kоличество NaOH в этих двух точках, исходя из формулы молярной концентрации раствора равно соответственно моль и 1 10-3моль

Исходя из формулы (3) для титруемого раствора с избытком щёлочи 1 и 10 мл. имеем значения рН соответственно 10 и 11. По рассчитанным значениям рН строим кривую титрования.

По кривой титрования видно, что в начале титрования рН раствора определяется присутствием в растворе соляной кислоты и слабо изменяется при добавлении раствора щёлочи. Вблизи точки эквивалентности происходит резкий скачок рН при добавлении очень малого количества щёлочи. В точке эквивалентности в растворе присутствует только соль и вода. Соль сильного основания и сильной кислоты гидролизу не подвергается и поэтому реакция раствора нейтральная рН = 7. Дальнейшее прибавление щёлочи приводит к увеличению рН раствора, которое также незначительно изменяется от объёма приливаемого титранта, как и в начале титрования. В случае титрования сильных кислот сильными основаниями и наоборот, точка эквивалентности совпадает с точкой нейтральности раствора.

При титровании слабой кислоты сильным основанием наблюдается несколько иная картина. Слабые кислоты в растворах диссоциируют не полностью и в растворе устанавливается равновесие..

HAn ® H+ + An-.

Константа этого равновесия называется константой диссоциации кислоты.

(4)

Поскольку слабая кислота диссоциирует не полностью, то концентрацию ионов водорода нельзя свести к общей концентрации кислоты в растворе как это было в случае титрования сильной кислоты. (6)

При добавлении раствора щёлочи к раствору слабой кислоты в растворе образуется соль слабой кислоты. Растворы, содержащие слабый электролит и его соль называются буферными растворами . Их кислотность зависит не только от концентрации слабого электролита, но и от концентрации соли. По формуле (5) можно рассчитать рН буферных растворов.

СKtAn – концентрация соли в буферном растворе.

KD – константа диссоциации слабого электролита

СHАn – концентрация слабого электролита в растворе.

Буферные растворы обладают свойством сохранять определённое значение рН при добавлении кислоты или основания (отсюда происходит их название). Добавление сильной кислоты к буферному раствору приводит к вытеснению слабой кислоты из её соли и следовательно, к связыванию ионов водорода:

KtAn + H+ ® Kt+ + HAn

При добавление сильного основания, последнее сразу нейтрализуется присутствующей в растворе слабой кислотой с образованием соли,

HAn + OH-® HOH + An-

что также приводит к стабилизации рН буферного раствора. Буферные растворы широко применяются в лабораторной практике в тех случаях, когда требуется создать среду с постоянным значением рН.

В качестве примера рассмотрим титрование 100 мл. 0,1М. раствора уксусной кислоты СН3СООН, 0,1М. раствором NaOH.

При добавлении щёлочи к раствору уксусной кислоты происходит реакция.

СН3СООН + NaOH ® СН3СООNa + H2O

Из уравнения реакции видно, что СН3СООН и NaOH вступают в реакцию в соотношении 1:1, следовательно количество вступившей в реакцию кислоты равно количеству щёлочи, содержащемуся в прилитом титранте. Количество образующегося ацетата натрия СН3СООNa также равно количеству щёлочи поступившему в раствор в ходе титрования.

В точке эквивалентности уксусная кислота полностью нейтрализована и в растворе присутствует ацетат натрия. Однако реакция раствора в точке эквивалентности не является нейтральной, поскольку ацетат натрия как соль слабой кислоты подвергается гидролизу по аниону.

СН3СОО - + Н+ОН- ® СН3СООН + ОН-.

Можно показать, что концентрация ионов водорода в растворе соли слабой кислоты и сильного основания может быть рассчитана по формуле.

0 " style="border-collapse:collapse;border:none">

CH3COOH вступившее в реакцию.

CH3COOН остающееся в растворе

1,00 10-2

1,00 10-2

0 ,100



По кривой титрования видно, что точка эквивалентности при титровании слабой кислоты сильным основанием не совпадает с точкой нейтральности и лежит в области щелочной реакции раствора.

Кривые титрования позволяют точно определить рН раствора в точке эквивалентности, что является важным для определения конечной точки титрования. Определение точки эквивалентности можно производить инструментальным методом , непосредственно измеряя рН раствора при помощи прибора рН–метра, но чаще для этих целей используют кислотно-основные индикаторы. Индикаторы по своей природе являются органическими веществами, которые изменяют свою окраску в зависимости от рН среды. Сами по себе индикаторы являются слабыми кислотами или основаниями, которые обратимо диссоциируют согласно уравнению:

НInd ® H+ + Ind-

Молекулярная и ионная формы индикатора имеют различную окраску и переходят друг в друга при определённом значении рН. Пределы рН, в которых индикатор меняет свою окраску, называются интервалом перехода индикатора. Для каждого индикатора интервал перехода является строго индивидуальным. Например, индикатор метиловый красный меняет окраску в интервале рН = 4.4 – 6,2. При рН < 4,4 индикатор окрашен в красный цвет, при рН > 6,2, в жёлтый. Фенолфталеин в кислой среде бесцветен, в интервале рН = 8 – 10 он приобретает малиновую окраску. Для того, чтобы правильно выбрать индикатор, необходимо сопоставить его интервал перехода со скачком рН на кривой титрования. Интервал перехода индикатора должен по возможности совпадать со скачком рН. Например, при титровании сильной кислоты сильным основанием скачок рН наблюдается в интервале 4-10. В данный промежуток попадают интервалы перехода таких индикаторов как метиловый красный (4,4 – 6,2), фенолфталеин (8 – 10), лакмус (5 – 8). Все эти индикаторы пригодны для установления точки эквивалентности в данном виде титрования. Такие индикаторы как ализариновый желтый (10 – 12), тимоловый голубой (1,2 – 2,8) в данном случае совершенно непригодны. Их использование даст совершенно неверные результаты анализа.

При выборе индикатора желательно, чтобы изменение окраски было наиболее контрастным и резким. С этой целью иногда применяют смеси различных индикаторов или смеси индикаторов с красителями.

3. Окислительно – восстановительное титрование .

(редоксиметрия, оксидиметрия.)

К окислительно-восстановительным, относят обширную группу методов титриметрического анализа, основанных на протекании окислительно-восстановительных реакций. В окислительно-восстановительном титровании используются различные окислители и восстановители. При этом возможно определение восстановителей титрованием стандартными растворами окислителей и наоборот, определение окислителей стандартными растворами восстановителей. Благодаря большому разнообразию окислительно-восстановительных реакций этот метод позволяет определять большое количество самых разнообразных веществ, в том числе и тех которые непосредственно не проявляют окислительно-восстановительных свойств. В последнем случае используется обратное титрование. Например, при определении кальция его ионы осаждают оксалат – ионом

Ca2+ + C2O42- ® CaC2O4¯

Избыток оксалата затем оттитровывают перманганатом калия.

Окислительно-восстановительное титрование имеет ещё ряд достоинств. Окислительно-восстановительные реакции протекают достаточно быстро, что позволяет проводить титрование всего за несколько минут. Многие из них протекают в кислой, нейтральной и щелочной средах, что значительно расширяет возможности применения данного метода. Во многих случаях фиксирование точки эквивалентности возможно без применения индикаторов, поскольку применяемые растворы титрантов окрашены (KMnO4, K2Cr2O7) и в точке эквивалентности окраска титруемого раствора изменяется от одной капли титранта. Основные виды окислительно-восстановительного титрования различают по окислителю, используемому в реакции.

Перманганатометрия.

В данном методе окислительно-восстановительного титрования окислителем служит перманганат калия KMnO4. Перманганат калия сильный окислитель. Он способен вступать в реакции в кислой, нейтральной и щелочной средах. о различных средах окислительная способность перманганата калия неодинакова. Наиболее сильно она выражена в кислой среде.

MnO4- + 8H+ +5e ® Mn+ + 4H2O

MnO4- + 2H2O + 3e ® MnO2¯ + 4OH-

MnO4- + e ® MnO42-

Перманганатометрическим методом можно определять самые разнообразные вещества: Fe2+, Cr2+, Mn2+, Cl-, Br-, SO32-, S2O32-, NO2,- Fe3+, Ce4+, Cr2O72+, MnO2, NO3-, ClO3-.и т. д. Многие органические вещества: фенолы, аминосахара, альдегиды, щавелевую кислоту и т. д.

Перманганатометрия имеет много достоинств.

1. Перманганат калия является дешёвым и легкодоступным веществом.

2. Растворы перманганата окрашены в малиновый цвет, поэтому точку эквивалентности можно установить без применения индикаторов.

3. Перманганат калия сильный окислитель и поэтому пригоден для определения многих веществ, которые не окисляются другими окислителями.

4. Титрование перманганатом можно проводить при различной реакции среды.

Перманганатометрия имеет и некоторые недостатки.

1. Перманганат калия трудно получить в химически чистом виде. Поэтому приготовить стандартный раствор по точной навеске вещества затруднительно. Для титрования используют вторичные стандарты перманганата, концентрация которых устанавливается по стандартным растворам других веществ: (NH4)2C2O4, K4, H2C2O4 и др. которые называются установочными веществами.

2. Растворы перманганата неустойчивы и при длительном хранении меняют свою концентрацию, которую необходимо периодически проверять по растворам установочных веществ.

3. Окисление перманганатом многих веществ при комнатной температуре протекает медленно и для проведения реакции требуется нагревание раствора.

Йодометрия.

В йодометрическом титровании окислителем является йод. Йод окисляет многие восстановители: SO32-, S2O32-, S2-, N2O4, Cr2+, и т. д. Но окислительная способность у йода значительно меньше, чем у перманганата. Йод плохо растворим в воде, поэтому обычно его растворяют в растворе KI. Концентрацию стандартного раствора йода устанавливают стандартным раствором тиосульфата натрия Na2S2O3.

2S2O32- + I2 ® S4O62- + 2I-

При йодометрическом определении используются различные способы титрования. Вещества, легко окисляемые йодом, титруют непосредственно стандартным раствором йода. Так определяют: CN-, SO32-, S2O32-, и др.

Вещества, которые труднее окисляются йодом, титруют методом обратного титрования: к раствору определяемого вещества приливают избыток раствора йода. После окончания реакции избыточный йод отитровывают стандартным раствором тиосульфата. Индикатором в йодометрическом титровании служит обычно крахмал, который даёт с йодом характерное синее окрашивание, по появлению которого можно судить о присутствии в растворе свободного йода.

Методом косвенного йодометрического титрования определяют многие окислители: к раствору окислителя приливают определённый объём стандартного раствора йодида калия, при этом выделяется свободный йод, который затем отитровывается стандартным раствором тиосульфата. Методом косвенного титрования определяют Cl2, Br2, O3 KMnO4, BrO32- и т. д.

Достоинства йодометрического метода.

1. Йодометрический метод является очень точным и превосходит по точности другие методы окислительно-восстановительного титрования.

2. Растворы йода окрашены, что позволяет в некоторых случаях определять точку эквивалентности без применения индикаторов.

3. Йод хорошо растворим в органических растворителях, что позволяет использовать его для титрования неводных растворов.

Йодометрия имеет и некоторые недостатки.

1. Йод является летучим веществом и при титровании возможны его потери за счёт испарения. Поэтому йодометрическое титрование нужно проводить быстро и по возможности на холоду.

2. Йодид ионы окисляются кислородом воздуха, по этой причине йодометрическое титрование необходимо проводить быстро.

3. Дайте определения понятиям: первичный стандарт, вторичный стандарт, титрант, аликвотный объём, титрование.

4. Какие существуют виды титриметрического анализа, на чём основана их классификация?

5. Перечислите основные виды окислительно-восстановительного титрования. Дайте краткую характеристику перманганатометрии и йодометрии.

6. Что называется точкой эквивалентности? Какие существуют способы её установления, и какие из них использовались в данной лабораторной работе?

7. Для чего предназначены кривые титрования? Каковы принципы их построения в кислотно-основном и окислительно-восстановительном титровании?

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «strizhmoscow.ru» — Все об устройство автомобиля. Информационный портал