Выпрямитель тиристорный. Управляемые выпрямители. Временные диаграммы однофазных управляемых выпрямителей. Тиристорные преобразователи - источники регулируемого напряжения Тиристорный выпрямитель схема

Уровень и частота выходного напряжения, а кроме этого стабилизация средних показателей вольтажа за определенный промежуток времени, могут быть согласованы единым устройством, известным как выпрямитель определенного типа и специфики функционирования. Подобные электрические устройства вполне распространены и знакомы многим - это управляемые выпрямители переменного тока. Основой таких приборов чаще всего становятся полупроводники: диоды, тиристоры, транзисторы и проч.

Однополупериодный тиристорный управляемый выпрямитель, иначе называемый четвертьмост, работает по простейшей схеме (рис. 1, а). Преобразователь, выполняющий роль управляемого ключа, контролируется выводным импульсом, включающим полупроводник. Главное условие работы этой схемы - угол включения, т. е. импульс должен быть сдвинут относительно Uвх=0. Как только значение угла превышает ноль, выпрямительтиристорный приходит в рабочее состояние.

Преобразователь VD прекращает работу, когда разница потенциалов близка к нулевому показателю при нагрузке Rn. Продолжительность рабочего периода выпрямителя можно выразить следующим уравнением, ориентируясь на указанные данные, условные единицы и принципы функционирования:

При активной тиристорный управляемый выпрямитель автоматически выключается в тот момент времени, когда его напряжение приближается к нулю. Таким образом, при наличии сигнала управления длительность включенного состояния тиристорного выпрямителя определяется уравнением:

где Т - время колебания входного напряжения Uвх.

Исходя из этого, среднее значение разницы импульсов можно выразить следующим образом:


Допустим, угол = 0°, а период tu 1 = Т/2. Тогда контролируемый полупроводник находится в рабочем состоянии при плюсовом значении полуволн питающей разнице потенциалов.

Рис. 1. Схема контролируемого четвертьмоста на тиристорном выпрямителеVD (а) и временной график, поясняющий работу при различных показателях угла включения a (б, в, г).

Рис. 2. Схема управления тиристорным выпрямителем (a) и временной график, поясняющие работу (б)

Например, а = л/4 tu 2 = (Т/2)(3/4) = 3 T/8, что соответствует сокращению периода tu 1 включения полупроводника на четверть, т. е. на 25 % и т. д.

Работа контролируемого тиристорного выпрямителяVD показана на графиках, приведенных на рис. 1,б-г.

При минимальном значении угла включения преобразователя а = 0 (рис. 1, б) средний вольтаж на нагрузке Uн, ср выражается максимальным значением, равным Uн, сро = Um/л. При а = л/2 (рис. 1, г) разница потенциалов (Uн, ср) л/2 = 0,5(Uн, ср)о = Um/2 л.

Допустим, что при минимальных значениях нагрузки угол а = л (рис. 1, г), но при постепенном увеличении этих показателей угол а уменьшается (рис. 1, в), тогда благодаря продлению tu падение вольтажа на выходе выпрямителя компенсируется до неизменного показателя Uн, ср. Это позволяет сгладить пульсацию тока - выпрямить его. Этот тип контроля называется вертикальным, или фазоимпульсным. Чаще всего такой принцип управления встречается в усилителях малой мощности и измерительных приборах.

Схема контроля тиристорного выпрямителя должна генерировать импульсы включения в определенных временных точках, заданных значением угла а. Стабильность работы достигается путем формирования импульсов с пиковыми показателями. Самое простое решение - использование низковольтных динисторных генераторов пиковых величин.

Наиболее простая схема контроля тиристорного выпрямителя при помощи пик-генератора на рис. 2, а. Эта схема включает в себя автогенератор релаксационных колебаний на динисторе (параллельно включенные конденсатор Су и динистор VD 2), который также формирует короткие импульсы для контроля над выпрямителем VD 1.

При прохождении полуволн плюсовых значений по питающему напряжению Uвх конденсатор Су начинает заряжаться. Заряд накапливается до того момента, когда напряжение Uс на конденсаторе не достигает показателей Uvd 2, вкл., чего достаточно для переключения динистора VD 2. В это время t = t1 (рис. 2, б) динистор открывается и становится проводником с очень низким показателем сопротивления на выходе. Благодаря этому в конденсаторе Су происходит разряд, переходящий по динистору VD 2 на резистор Rу и управляющий переход выпрямителя VD 1 (рис. 2, 6). Период разряда определяется понижением тока в динисторе до значения I выкл. В это время динистор снова приходит в закрытое состояние - отсечку, и конденсатор Су опять может начать накопление заряда iyпp.

Как только ток iупр изменяется (рис. 2, б), период накопления заряда конденсатора Су до напряжения Uvd 2, вкл. также изменяется, что выражается в сдвиге контролирующих импульсов относительно временных значений (рис. 2, б). Таким образом, угол а можно изменять, а вслед за ним и воздействовать на величину напряжения на выходе. В этом и заключается фазоимпульсный способ управления преобразователем типа тиристорный выпрямитель.

Такой способ подходит для преобразователей однофазного и многофазного типа.


Рис. 3. Схема однофазного управляемого двухполупериодноговыпрямителя на тиристорах с CLC-фильтром (а) и временной график, поясняющие работу (б)

Работа двухполупериодноготиристорного управляемого преобразователя, также называемого стабилизатором или электрическим вентилем, показана на рис. 3, а.

Принцип контроля осуществляется посредством подачи отпирающего вольтажа. При стабильном напряжении схема действует как двухполупериодныйвыпрямитель со средней точкой (пара четвертьмостов). Средняя разница потенциалов на выходе определяется уравнением:

При развороте угла а, контролирующего напряжения в полупериод, возникает задержка, на входе к фильтру подводится лишь часть напряжения (рис. 3, 6). Зависимость в таком случае выражается как Uи, сp = F (a):

Отсюда следует, что средние показатели разницы потенциалов на выходевыпрямителей зависят от изменения угла а: Uср, макс. = 2Um/л - Uср, мин. = 0.

Преобразователи, в которых используются входные трансформаторы, контролируются при помощи тиристоров, включенных в цепь. Подобная схема особенно хороша для использования понижающих трансформаторов, т. к. при U1 > U2 = I1 < I2. При таких показателях можно разработать устройство, основанное на тиристорном звене VD 1, работающем при низком вольтаже на выпрямители, и оно будет весьма компактным. Диодное же звено VD 2 можно построить на диодах Шотки. Это наиболее продуктивная схема с высокой эффективностью работы источников вторичного питания.

Функциональная схема тиристорных выпрямителей для дуговой сварки в обобщенном и упрощенном виде показана на рис. 19.13 . Отличительным элементом в приведенной схеме является наличие тиристорного выпрямительного блока. Это дает возможность использовать его в качестве регулятора тока РТ. Благодаря сдвигу по времени управляющего импульса (см. рис. 19.3, б ), подаваемого на тиристорный блок, формируют вольт-амперную характеристику выпрямителя и осуществляют его настройку на заданный режим непрерывной или импульсной работы. Для этих целей в схеме источника предусмотрен блок фазоимпульсного управления БФИУ. Через этот же блок замыкаются и обратные связи от дуги на регулятор тока.

Тиристорные выпрямители , как правило, отличаются высокой стабилизацией по напряжению и току дуги при изменениях напряжения питающей сети, длины дуги и температуры окружающей среды.

Рис. 19.13. Функциональная схема выпрямителей дуги с тиристорными регуляторами тока

Получили широкое распространение выпрямители типа ВСВУ-ВСП и ВДУ-ВДГ. В настоящее время это основные выпрямители для дуговой сварки.

В выпрямителях типа ВСВУ - ВСП принцип фазорегулировки заключается в формировании пилообразного напряжения U c , сравнении его с напряжением управления U у и последующем формировании прямоугольных импульсов. На рис. 19.14 приведена карта напряжений блока формирования импульсов управления. Невысокие значения напряжения управления U y = min (вариант а) обеспечивают открытие тиристоров в силовом блоке при α = max. При этом реализуются минимальные выходные параметры источника. Максимальные значения напряжения управления U у = max (вариант б) соответствуют минимальным углам открытия тиристоров α = min и, соответственно, максимальным выходным параметрам.

Рис. 19.14. Карта напряжений блока формирования импульсов: Uc - пилообразное напряжение; Uу - напряжение управления; U0 - напряжение нс тиристорах

По принципу «вертикального управления» тиристорами разработаны широко известные, выпускаемые в больших количествах выпрямители для дуговой сварки с крутопадающими (серия ВСВУ) и пологопадающими (серия ВСП) вольт-амперными характеристиками. Единая принципиальная электрическая схема этих источников реализована в виде унифицированных блоков.

Принципиальная упрощенная электрическая схема источников питания типа ВСВУ приведена на рис. 19.15, а . Трехфазный трансформатор Т имеет одну первичную обмотку W 1 и две вторичные обмотки W 2 и W 2в. Обмотка W 2 подключена к тиристорному выпрямителю V (RT), выполняющему функции регулятора тока и имеющему нологопадающую вольт-амперную характеристику. От вторичной обмотки W 2в, напряжение подводится к диодному выпрямительному блоку V в, образующему вспомогательный источник питания с крутопадающей вольт-амперной характеристикой с помощью линейных дросселей L B . Вспомогательный источник предназначен для зажигания дуги, сварки на малых токах, обеспечивает сигналы обратной связи и др. В процессе сварки дуга питается одновременно от обоих источников. Совмещение двух источников позволило существенно снизить напряжение холостого хода основного источника и сформировать крутопадающие внешние характеристики в области рабочих токов (рис. 19.15, б ).


Рис. 19.15. Источники серии ВСВУ: а - принципиальная электрическая схема; б - вольт-амперные характеристики

Источники питания типа ВСП предназначены для механизированной сварки плавящимся электродом. В связи с этим на блок формирования импульсов поступают сигналы с блока регулирования тока и напряжения. Типовые вольт-амперные характеристики источников серии ВСП приведены на рис. 19.16 . В диапазоне 30-60 В напряжение регулируется плавно. Для улучшения динамических свойств характеристики изменяют угол ее наклона.

Рис. 19.16. Вольт-амперные характеристики источников серии ВСП

В выпрямителях типа ВДУ блок фазоимпульсного управления тиристорами состоит из трех основных элементов (рис. 19.17, а ):

· Узла формирования шестифазного синусоидального напряжения (7);

· узла формирования постоянного напряжения управления (2);

· узла формирования и усиления управляющих сигналов (3).

Рис. 19.17. Схемы управления тиристорами: а - электрическая; б - формирования положительного сигнала

Напряжение управления Uу представляет собой сумму двух встречновключенных постоянных напряжений: напряжения смещения Uсм и регулируемого напряжения задания U3.

Напряжение смещения служит для стабилизации выходных параметров выпрямителя при колебаниях напряжения сети. Регулируемое напряжение задания представляет собой часть стабилизированного напряжения и изменяется резистором. На рис. 19.17, б показано формирование положительного сигнала, подаваемого на вход узла усиления, и формирование сигнала управления тиристорами при двух различных напряжениях задания U 3l и U 32 . При изменении U 3 меняются фаза и длительность положительного гш нала на входе узла усиления (α 1 и α 2), что приводит к изменению угла открытия тиристоров и регулированию режима работы источника.

Принципиальная электрическая схема выпрямителей для дуговой сварки типа ВДУ приведена на рис. 19.18, а . Трансформатор Т имеет две вторичные обмотки, соединенные в две обратные звезды через уравнительный реактор L yp . Тиристоры V 1 - V 6 включены в каждую фазу вторичных обмоток. Линейный дроссель L сглаживает пульсации выпрямленного тока и формирует динамические свойства источника. В качестве датчика тока использован магнитный усилитель МУ. Сигнал обратной связи, пропорциональный сварочному току, снимается с резистора R oc . Внешние типовые вольт-амперные характеристики рассматриваемых выпрямителей приведены на рис. 19.18, б .

Рис. 19.18. Выпрямители типа ВДУ: а - принципиальная электрическая схема; б - вольт-амперные характеристики.

8. Тиристорные усилители с фазоимпульсным управлением

При этом способе управления в качестве управляющего сигнала используются импульсы, длительность которых, как правило, не превышает полупериода питающего напряжения. Учитывая, что время включения тиристора мало, для управления им используют обычно кратковременные импульсы длительностью от нескольких единиц до сотен микросекунд. Амплитуда управляющих импульсов тока должна превышать ток управления спрямления I У.С.

Изменяя фазу управляющих импульсов в пределах 0<α<π, регулируют напряжение в нагрузке от максимального значения до нуля. При этом методе управления полностью исключается влияние разброса входных параметров тиристора, температуры окружающей среды и p-n переходов, а также формы питающего напряжения на характеристики вход-выход усилителя. К достоинствам фазового метода управления следует отнести также малые потери в управляющем переходе тиристора благодаря кратковременности управляющего импульса. Этот метод получил наибольшее распространение в тиристорных усилителях любой мощности.


Управлять амплитудой напряжения можно различными способами. Можно установить автотрансформатор, на выходе которого напряжение изменяется в зависимости от положения бегунка автотрансформатора. Другим вариантом управления напряжением является подмагничивание сердечника трансформатора или применение дросселей насыщения, которые при подмагничивании изменяют переменную составляющую магнитного поля и соответственно напряжения. Оба приведенных метода требуют наличия громоздких и тяжелых установок.

Решение данной проблемы возможно при использовании тиристоров, которые позволяют управлять как выпрямленным действующим напряжением, так и действующим значением переменного напряжения.

На рис . 7.8, а и б представлены тиристорный управляемый выпрямитель и тиристорный регулятор мощности. Эти схемы отличаются друг от друга тем, что нагрузка в случает тиристорного управляемого выпрямителя включена после выпрямителя, а в случае тиристорного регулятора мощности - до выпрямителя. В первом случае происходит управление действующим значением выпрямленного напряжения, а во втором - действующим значением переменного напряжения.



По нагрузке, включенной после выпрямителя , протекает постоянный по направлению ток. По нагрузке, включенной перед выпрямителем , протекает переменный по направлению ток. При отсутствии запускающего импульса формирователя тиристор не открывается, поэтому ток по нагрузке не идет и падение напряжения на ней отсутствует. При отсутствии запускающих импульсов формирователя тиристор закрыт. Напряжение на тиристоре растет до того момента, пока не произойдет отпирание тиристора. При этом напряжение с открывшегося тиристора перераспределяется на нагрузку. На ри с. 7.9. (под пунктирной линией) - падение напряжения на закрытом тиристоре, а заштрихованная площадь - соответствует действующему значению напряжения на нагрузке.

Угол управления тиристора отсчитывается от момента прохождения напряжения через нулевую точку. Чем больше угол управления тиристора, тем дольше он остается закрытым, тем позже тиристор открывается, тем меньше действующее значение напряжения на нагрузке. Для однофазной цепи предельный угол управления тиристора составляет 180.электрическ. градусов. При этом угле мгновенное значение напряжения тиристора равно нулю и следовательно с подачей управляющего импульса в этот момент действующее значение напряжения на нагрузке равно нулю.

Тиристорные регуляторы мощности могут быть выполнены по разнообразным схемам. Одна из таких схем представлена на рис . 7.10. Открывание тиристоров VS 1 и VS 2 происходит поочередно. В первый полупериод открывается тиристор VS 1 , а во второй - VS 2 . Запускающие импульсы управления поступают с формирователя импульсов на тиристор по заданному углу управления. Пусть требуется получить напряжение на выходе тиристорного управляемого выпрямителя, равное половине входного, что соответствует углу управления 90 о, при максимальном угле управления 180 о. Частота сети 50 Гц , что соответствует периоду колебаний

или 20 мС .

Одна полуволна имеет длительность 10 мС , что соответствует углу управления 180 о. Для получения угла управления в 90 о необходимо запустить тиристор через 5мС после момента достижения напряжением нулевой отметки.

Схема простейшего тиристорного управляемого выпрямителя представлена на рис . 7.11.

Особенностью тиристорных регуляторов является необходимость синхронизации работы формирователя импульсов и напряжения сети. При отсутствии таковой незначительный уход частоты приведет к существенному изменению угла управления, а следовательно, и требуемое напряжение не будет соответствовать реальному напряжению.

Тиристорный управляемый выпрямитель состоит из силового блока и синхронизируемого формирователя импульсов. В состав силового блока входит выпрямитель на диодах VD 1 -VD 4 , тиристор VS и нагрузка. При больших мощностях нагрузки тиристор и диоды должны выдерживать тот ток, который требуется потребителю. Расчет этих элементов приведен в разделе «Полупроводниковые диоды».

Формирователь импульсов состоит из параметрического стабилизатора напряжения, который одновременно выполняет функции синхронизатора и блока формирования импульсов по заданному углу управления.

Параметрический стабилизатор состоит из балластного сопротивления R б и стабилитрона VD 5 . Резисторы R 1 и R 2 - делитель напряжения, задающий режим работы аналога тиристора с управлением по аноду на транзисторах VT 1 и VT 2 . Фазовращатель или времязадающая цепь построена на резисторе R 4 и конденсаторе С .

Переменный ток не пойдет через диоды выпрямителя до тех пор, пока тиристор VS не получит запускающий импульс от формирователя. Для получения запускающего импульса необходимо чтобы открылся аналог тиристора. С приходом выпрямленного напряжения на параметрический стабилизатор избытки напряжения, превышающие напряжение стабилизации падают на резистор R б , а на стабилитроне остается напряжение стабилизации, зависящее от параметров стабилитрона. На выходе параметрического стабилизатора возникают импульсы трапециидальной формы. Одновременно нулевому значению входного напряжения соответствует нулевое значение напряжения на выходе стабилизатора, т.е. происходит синхронизация напряжения питания и формирователя импульсов.

При появлении напряжения на выходе стабилитрона начинает заряжаться конденсатор С через резистор R 4 . Когда напряжение на конденсаторе достигнет напряжения срабатывания аналога тиристора, произойдет его открытие. Возникнет импульс тока разряда конденсатора С через транзисторы VT 1, VT 2 , и резистор R 3 на корпус схемы. На рис 7.11 ток разряда конденсатора показан пунктирной линией. Всплеск тока через резистор R 3 приведет к всплеску напряжения на управляющем электроде тиристора и запуску последнего. Время заряда конденсатора С относительно нулевого значения напряжения определяется параметрами резистора R 4 и емкостью конденсатора С . Цепь R 4 – C задает угол управления тиристора, соответствующий времени задержки запуска тиристора относительно нулевого напряжения. Для рассматриваемой схемы максимальный угол управления для однофазного тиристорного регулятора на частоте 50 Гц составляет 10 мС , что соответствует углу управления 180 о. Для угла управления в 90 о задержка запуска тиристора относительно нулевого значения напряжения составляет 5 мС. Изменяя положение ручки реостата R 4 можно задать любое время заряда конденсатора, т.е. задать угол управления тиристора. При перемещении бегунка реостата вверх растет сопротивление реостата, увеличивается время заряда конденсатора до напряжения включения тиристора, а, следовательно, растет угол управления тиристора и снижается действующее значение напряжения на нагрузке.

Действующее значение напряжения на нагрузке определяется по формуле

где U d - действующее значение напряжения на нагрузке; U dо – максимальное значение напряжения на нагрузке при угле управления j = 0 0 ; φ - угол управления тиристора.

При включении нагрузки R н 2 до выпрямителя, по ней протекает переменный по направлению ток только в том случае, если тиристор будет открыт. Тогда форма выходного напряжения, (т.е. на нагрузке) будет соответствующей рис . 7.12, е . Заштрихована действующая часть напряжения на нагрузке. При включении нагрузки перед выпрямителем по ней протекает переменный по направлению ток, действующее значение которого определяется временем открытого состояния тиристора, а форма выходного напряжения имеет вид рис . 7.1, ж .

Тиристор остается в схеме на прежнем месте, и формирователь остается тем же. В зависимости от того, в какой части схемы установлен резистор нагрузки, ток по ней протекает постоянный или переменный по направлению. Если по нагрузке проходит постоянный по направлению регулируемый ток, схема называется «Тиристорный управляемый выпрямитель». При включении нагрузки перед выпрямителем по ней протекает переменный по направлению ток, и схема называется «Тиристорный регулятор мощности».

Регулятор мощности можно построить и на симисторе (рис . 7.13).

Последовательно с симистором . Для открытия симистора необходимы управляющие импульсы, формирователь которых построен на парах транзисторов VT 1 -VT 2 и VT 3 -VT 4 . Каждая па

ра транзисторов представляющих собой аналоги тиристоров: VT 1 -VT 2 –с управлением по катоду, а VT 3 и VT 4 - с управлением по аноду. Балластное сопротивление R б и стабилитроны VD 1 и VD 2 образуют стабилизатор переменного напряжения. Угол управления симистора задается сопротивлением резистора (R о+R 1) и емкостью конденсатора С . При положительной полуволне верхняя обкладка конденсатора заряжается положительно, и когда напряжение на нем достигнет напряжения включения аналога тиристора происходит открытие аналога тиристора и запуск симистора VS .

Импульс тока разряда конденсатора проходит через резистор R 6 и открывает симистор.

При отрицательном полупериоде открывается аналог тиристора, построенный на транзисторах VT 3 - VT 4 и снова запускает симистор.

При работе тиристорных управляемых выпрямителей на индуктивную нагрузку (обмотки возбуждения и якорь двигателей постоянного тока) возникают проблемы выключения тиристоров, связанные с отставанием тока от напряжения. Для выключения тиристора требуется принудительная коммутация, так как ток самоиндукции обмоток возбуждения или якоря двигателя продолжает идти после достижения напряжением нулевого уровня. Этот вопрос в учебном пособии не рассматривается.

  • 2.1. Последовательное соединение элементов электрических цепей
  • 2.2. Параллельное соединение элементов электрических цепей
  • 2.3.Преобразование треугольника сопротивлений в эквивалентную звезду
  • 2.4.Преобразование звезды сопротивлений в эквивалентный треугольник
  • 4.1. Метод непосредственного применения законов Кирхгофа
  • 4.2. Метод контурных токов
  • Порядок расчета
  • Рекомендации
  • 4.3. Метод узловых потенциалов
  • 4.4. Метод двух узлов
  • 4.5. Метод эквивалентного генератора
  • 5. Нелинейные электрические цепи постоянного тока
  • 5.1. Основные определения
  • 5.2. Графический метод расчета нелинейных цепей постоянного тока
  • 6. Электрические цепи однофазного переменного тока
  • 6.1. Основные определения
  • 6.2. Изображения синусоидальных функций времени в векторной форме
  • 6.3. Изображение синусоидальных функций времени в комплексной форме
  • 6.4. Сопротивление в цепи синусоидального тока
  • 6.5. Индуктивная катушка в цепи синусоидального тока
  • 6.6. Емкость в цепи синусоидального тока
  • 6.7. Последовательно соединенные реальная индуктивная катушка и конденсатор в цепи синусоидального тока
  • 6.8. Параллельно соединенные индуктивность, емкость и активное сопротивление в цепи синусоидального тока
  • 6.9. Резонансный режим в цепи, состоящей из параллельно включенных реальной индуктивной катушки и конденсатора
  • 6.10. Мощность в цепи синусоидального тока
  • 6.11. Баланс мощностей
  • 7. Трёхфазные цепи
  • 7.1. Основные определения
  • 7.2. Соединение в звезду. Схема, определения
  • 7.3. Соединение в треугольник. Схема, определения
  • 7.4. Расчет трехфазной цепи, соединенной звездой
  • 7.5. Мощность в трехфазных цепях
  • 8. Переходные процессы в линейных электрических цепях
  • 8.1. Общая характеристика переходных процессов
  • 8.2. Переходные процессы в цепях с одним реактивным элементом
  • 9. Несинусоидальные периодические токи.
  • 10. Электроника. Введение.
  • 10.1. Полупроводниковые материалы.
  • 10.2 Полупроводниковые диоды.
  • 10.3. Биполярный транзистор
  • 10.4. Полевые транзисторы.
  • 10.5. Тиристоры.
  • 11. Усилители электрических сигналов
  • 11.1. Общие сведения, классификация и основные характеристики усилителя. Типовые функциональные каскады полупроводникового усилителя.
  • 11.2. Анализ работы транзисторного усилителя. Понятие о классах усиления усилительных каскадов.
  • 11.3. Температурная стабилизация режимов в транзисторных усилителях. Особенности работы усилителя на полевом транзисторе.
  • 11.4. Избирательные усилители. Усилители мощности. Усилители постоянного тока.
  • 11.5. Анализ дифференциального усилителя.
  • 11.6. Операционный усилитель (оу). Схемы стабилизации и повышения входного сопротивления оу.
  • 12.1. Классификация, состав и основные параметры.
  • 12.2. Показатели выпрямителей однофазного тока.
  • 12.3. Трехфазные выпрямители. Внешние характеристики выпрямителей.
  • 12.4. Принцип работы выпрямителей на тиристорах.
  • 12.5. Сглаживающие фильтры и оценка эффективности их работы.
  • 12.6. Компенсационные стабилизаторы напряжения и преобразователи постоянного тока в переменный.
  • 13. Основы цифровой электронной техники
  • 13.1. Анализ логических устройств.
  • 13.2. Логические операции и способы их аппаратурной реализации.
  • 13.3. Сведения об интегральных логических микросхемах.
  • 13.4. Схемотехнические и конструктивно-технологические особенности логических микросхем различных серий.
  • 13.5. Принципы функционирования цифровых устройств комбинационной логики.
  • 12.4. Принцип работы выпрямителей на тиристорах.

    Внешние характеристики выпрямителей имеют вид падающей кривой (см. рис. 12.6), поэтому увеличение тока нагрузки вызывает снижение выходного напряжения. В то же время для питания многих устройств систем управления (электродвигателей, усилителей и т. д.) требуется поддержание выходного напряжения на заданном уровне независимо от значения тока нагрузки. Для этого используют управляемые (регулируемые) выпрямители с применением тиристоров, транзисторов и других управляющих приборов. Внешняя, характеристика таких выпрямителей показана на рис. 12.6 штрихпунктиром и близка к идеальной.

    Сущность работы тиристорного управляемого выпрямителя рассмотрена на примере простейшей однополупериодной схемы (рис. 12.7, а). Схема управления тиристора VS обеспечивает изменение момента его включения, что способствует поддержанию на заданном уровне среднего значения напряжения на нагрузке, при различных значениях тока нагрузки. В случае активной нагрузки R н тиристор VS автоматически выключается в тот момент времени, когда его анодное напряжение приближается к нулю. Таким образом, при включающем тиристор сигнале, оцениваемом углом включения, прибор работает в режиме переключателя с временем включения

    где Т - период колебания входного напряжения u(t).

    Например, при α =0 время

    и тиристор VSполностью открыт в течение положительных полуволн питающего напряжения.

    что соответствует уменьшению времени t u 1 включения тиристора на 1/4, т.е. на 25%, и т.д.

    Для пояснения механизма управления тиристорной схемой на рис. 12.7, б, в, г приведены временные диаграммы напряжений на нагрузке. При наименьшем угле включения тиристора α =0 (рис. 12.7, б) среднее напряжение на нагрузке имеет максимальное для однополупериодной схемы (рис. 12.7, а) значение, равное

    Если в режиме минимальной нагрузки (R н велико,I н.ср мало) обеспечить, например, угол α =π/2 (рис. 12.7, г), а затем по мере повышения нагрузки уменьшать угол α (рис. 12.7, в), то можно получить неизменное значениеU н.ср за счет компенсации возрастания значения ∆U ср [см. (12.11)]. Такой принцип управления тиристорным выпрямителем называют фазоимпульсным (вертикальным) и широко используют в тиристорных преобразователях различного назначения.

    Рис. 12.7. Однополупериодный выпрямитель с тиристором: а - схема (УЭ - управляющий электрод); б, в, г - временные диаграммы выпрямленного напряжения при различных углах включения тиристора

    Схемы управления тиристором должны генерировать управляющие импульсы в заданные моменты времени, соответствующие требуемым значениям угла. При этом для надежной работы тиристора необходимы кратковременные импульсы с большой крутизной переднего фронта. Устройство, обеспечивающее регулирование угла включения тиристора, называют фазовращателем. Фазовращатели легко получить, используя комбинацию трансформатора с R- и L-элементами. Однако из-за низкой крутизны формируемого ими управляющего сигнала они не находят применения в тиристорных схемах. Наиболее пригодны для указанных целей полупроводниковые фазовращатели со встроенными пик-генераторами на динисторах (диодных тиристорах).

    Простейшая схема пик-генераторного управления тиристором VS1 приведена на рис. 12.8, а. Она состоит из динисторного автогенератора релаксационных колебаний (параллельно включенные конденсатор Су и динистор VS2), служащего одновременно и формирователем кратковременных импульсов управления тиристором VS1 благодаря использованию резистора R у в анодной цепи динистора VS2.

    В момент положительных полуволн питающего напряжения u(t) начинается заряд конденсатора С у через регулировочный резистор R р. Этот процесс продолжается до тех пор, пока напряжение u C (t) на конденсаторе не достигнет значения U вкл, достаточного для переключения динистора VS2, т. е.

    С этого момента t=t 1 (рис. 12.8, б) динистор переходит в режим насыщения (проводящее состояние), характеризующийся чрезвычайно низким значением его выходного сопротивления. В результате этого конденсатор С у разряжается через динистор VS2 и резистор R у, формируя кратковременный импульс тока i у (рис. 12.8, в) в управляющей цепи тиристора VS1. Окончание времени разряда обусловливается снижением напряжения на динисторе до значения U выкл, т. е. моментом времени t=t 2 (рис. 12.8, б). В этот момент происходит обратное переключение динистора в состояние отсечки. Конденсатор С у, вновь получает возможность заряжаться под действием следующей полуволны питающего схему напряжения u(t). При изменении сопротивления резистора R р (рис. 12.8, а) меняются параметры зарядной цепи (τ з =R р С у), а потому наблюдается сдвиг импульсов управления i у во времени (рис. 12.8, в). Это позволяет менять угол включения тиристора, обеспечивая таким образом фазоимпульсный способ управления выходным напряжением (см. рис. 12.7).

    Рис. 12.8. Схема пик-генераторного управления тиристором (а); временные диаграммы напряжения на конденсаторе (б) и тока управления тиристором (в)

    Рассмотренный принцип управления тиристором можно использовать как для однофазных, так и многофазных выпрямительных устройств.

    В выпрямителях с трансформаторами на входе регулирование напряжения на нагрузке можно осуществлять тиристорами, включенными во входную цепь переменного тока, как показано на рис. 12.9. Такие схемы весьма перспективны для выпрямителей, использующих понижающие трансформаторы, поскольку при U 1 >>U 2 имеем I 1 <

    Рис. 12.9. Схема двухполупериодного тиристорного управления выпрямителем

    Широкое применение тиристоров при регулировании напря­жения объясняется следующими их преимуществами по сравне­нию с рассмотренными ранее схемами:

    Большая экономичность вследствие малого падения напряжения в проводящем состоянии (около 2 В);

    Высокая скорость регулирования, позволяющая обеспечить стабилизацию выпрямленного напряжения и осуществить защиту выпрямителя от перегрузок и коротких замыканий;

    Меньшая необходимая мощность управления;

    Меньшие габаритные размеры и масса.

    Управляемые вентили - тиристоры - могут находиться в двух крайних состояниях (рис. 122, а): открытом (участок ВС) и закры­том (участок 0А). Момент включения тиристора можно регулиро­вать, подавая управляющий импульс тока на р-п -переход, приле­гающий к катоду (рис. 122, б). Ток нагрузки, проходя через от крытый тиристор, смещает все три

    Рис. 122. Вольтамперная характеристика тиристора (а), его структура, (б) и условное графическое обозначение (в): Iу - ток управления; А - анод; К - катод: УЭ - управляющий электрод/

    Рис. 123. Структурная схема управляемого выпрямителя (и), принципи­альная схема простейшего РВБ (б) и диаграммы напряжений на его входе и выходе (в)

    eго р-п -перехода в прямом направлении, и управляющий электрод (УЭ) теряет влияние на процессы, происходящие в тиристоре. При падении прямого тока до нуля после рассасывания заряда неосновных носителей в базо­вых областях тиристор запирается и его управляющие свойства восстанавливаются. Условное графическое обозначение тиристо­ра приведено на рис. 122, в.

    На рис. 123,а приведена структурная схема управляемого вы­прямителя на управляемых вентилях.

    Принципиальным отличием схемы управляемого выпрямите­ля (УВ) от неуправляемого является наличие в ней регулируемого вентильного блока (РВБ) и устройства управления (УУ), регули­рующего напряжение сети. Простейшая схема РВБ на одном ти­ристоре VS приведена на рис. 123, б. Следует напомнить, что для включения тиристора необходимо выполнение следующих усло­вий: напряжение на его аноде должно быть положительным, но меньшеU ПР.ВКЛ. , а к управляющему электроду (УЭ) должно быть приложено положительное напряжение, соответствующее отпи­рающему току. Первое условие выполняется для положительных полуволн напряжения U 2 , а для выполнения второго условия к управляющему электроду тиристора подводится отпирающий (уп­равляющий) положительный импульс напряжения U y .

    В момент прихода управляющего импульса, соответствующего углу отпирания а, тиристор теряет управляющие свойства, поэто­му, когда напряжение на аноде станет равным нулю, произойдет его выключение. Форма напряжения на резистивной нагрузке R H без фильтра показана на рис. 123, в. Момент включения тиристора

    Можно регулировать в пределах положительной полуволны вы­ходного напряжения U 2 трансформатора, т.е. в диапазоне 0 ≤α≤π. При этом если тиристор включается при α = 0, то среднее выпрямленное напряжение нагрузки U Н.С.В. =0. Такой способ уп­равления тиристором называется фазоимпульсным.

    В рассмотренной схеме управляемого выпрямителя пульсации напряжения нагрузки довольно большие, поэтому для их умень­шения необходимо включить сглаживающий фильтр. Следует от­метить, что в тиристорных управляемых выпрямителях использу­ют фильтры, начинающиеся с дросселя, так как при подключе­нии сразу емкостного фильтра заряд конденсатора через открыв­шийся тиристор может сопровождаться большим током, который может вывести тиристор из строя.

    Рассмотрим работу схемы двухфазного управляемого выпря­мителя (рис.124, а) с индуктивно-емкостным фильтром. В этой схеме возможны два режима работы: без блокировочного диода (VD) и с блокировочным диодом. Различие этих режимов заклю­чается в способе выключения тиристоров.

    Рис. 124. Схема двухфазного управляемого выпрямителя ), временные диаграммы напряжений на входе и выходе (б) и регулировочные кри­вые (в): 1 - без диода VD ; 2 - при наличии диода VD.

    Работа выпрямителя без блокировочного диода происходит следующим образом. С поступлением управляющего импульса тиристор VS1 включается с углом отпирания α. На выход выпря­мителя передается напряжение первой фазы вторичной обмотки U" 2 . При t ≥ п напряжение U" 2 изменяет полярность на отрицатель­ную, но тиристор VS1 не закрывается, так как через него прохо­дит ток дросселя фильтра L ф, и напряжение самоиндукции обес­печивает его открытое состояние.

    При t = α + п включается тиристор VS2, который передает на выход напряжение U" 2 второй фазы вторичной обмотки, В этом случае ток дросселя фильтра L ф переключается на вторую фазу, а тиристор VS1 закрывается. Напряжения на выходе выпрямителя U o и нагрузке U H показано на рис. 124, б (заштрихованные обла­сти).

    При достаточно большом значении L ф = R H /ωугол включения тиристоров можно регулировать от нуля до π/2, как показано на рис. 124, в (кривая 1при L =∞).

    Напряжение нагрузки растет с уменьшением угла α и умень­шается при его увеличении.

    При работе выпрямителя с блокировочным диодом VD тири­сторы VS VS 2выключаются, когда напряжение на его аноде становится равным нулю. При этом протекание тока в дросселе фильтра не прерывается из-за включения диода VD.

    В результате часть периода от πдо π+ α ток в дросселе (а зна­чит, и в нагрузке) проходит через диод VD, и напряжение на вы­ходе выпрямителя не изменяет полярности, как показано на рис. 124, б.

    Угол α отпирания тиристора в схеме с диодом VD можно ре­гулировать от нуля до π, как показано на рис. 124, в (кривая 2 при L = 0).

    При одинаковом угле отпирания тиристоров в схеме без бло­кировочного диода напряжение на нагрузке меньше, чем в схеме с блокировочным диодом, так как в течение части периода повто­рения входного напряжения на его выход передается отрицатель­ное напряжение.

    Мостовой управляемый выпрямитель. Мостовой выпрямитель можно построить с меньшим (чем четыре) числом тиристоров, так как для обеспечения управления достаточно включить в каж­дую из двух последовательных цепей, состоящих из двух диодов, один диод управляемый, а другой - неуправляемый (рис. 125, а), Применение двух управляемых диодов вместо четырех (см. рис. 124) позволяет упростить схему управления и удешевить стоимость вен­тильной группы.

    Рассмотрим работу схемы мостового выпрямителя, в которой одновременно работают тиристор VS1 и вентиль VD2 или тирис­тор VS2 и вентиль VD 1. Временные диаграммы напряжений и то-

    Рис. 125. Мостовая схема управляемого выпрямителя (а) и временные диаграммы напряжений и токов в этой схеме (б)

    ков при работе такой схемы на индуктивную нагрузку показаны на рис. 125, 6.

    В момент времени t 1на управляющий электрод тиристора VS 1подается импульс управления, открывающий его. В интервале вре­мени от t 1 до t 2ток протекает через тиристор VS 1и вентиль VD,. и напряжение на выходе выпрямителя повторяет входное напря­жение U 2. В момент времени t 3 напряжение U 2изменяет свою полярность, и вентиль VD 2запирается, а вентиль VD 1открывает­ся. Переключения тиристоров в этот момент времени произойти не может, так как на управляющий электрод тиристора VS2 не поступает импульс управления. В итоге в течение периода време­ни от t 2до t 3 открыты тиристор VS 1и вентиль VD2 и через них протекает ток нагрузки I 0 .

    Выпрямленное напряжение U 0 в этом интервале времени рав­но нулю (так как выход выпрямителя закорочен), а ток нагрузки поддерживается за счет энергии, запасенной в дросселе L. В мо­мент времени t 3за счет управляющего импульса открывается ти­ристор VS2, а тиристор VS 1 запирается, так как на него при этом подается обратное напряжение.

    В интервале времени от t 3до t 4ток проводят и тиристор VS 2, и вентиль VD 1, а напряжение на выходе выпрямителя U 0 анало­гично входному напряжению U 2, но с противоположным зна­ком,

    В момент времени U вновь происходит коммутация тока в группе неуправляемых вентилей: запирается вентиль VD1 и открывается вентиль VD2.

    В интервале времени от t4 до t5 тиристор VS2 и вентиль VD1 открыты, напряжение на выходе выпрямителя U0 = 0, а ток на­грузки Iо поддерживается неизменным за счет энергии, запасен­ной в дросселе. В интервале времени от t5 до t6 процессы идентич­ны процессам в интервале от t1 до t2.

    Как видно из рис. 125, б, временная диаграмма выпрямленного напряжения U0 в этой схеме такая же, как и в схеме выпрямителя с активной нагрузкой.

    УСТРОЙСТВА ЗАЩИТЫ ОТ ПЕРЕГРУЗОК

    Вторичные источники питания часто снабжают устройствами электронной защиты (УЗ) от перегрузоки короткого замыкания. Такие устройства включают в себя следующие элементы: датчик контролируемой величины (тока, напряжения или температуры); пороговое устройство (ПУ) или схему сравнения; исполнительное устройство (ИУ). Чаще всего требуется защита источников пита­ния от перегрузки. В этом случае, когда значение тока превысит допустимое, включается пороговое устройство и приводит испол­нительный механизм в состояние отключения нагрузки.

    Устройства зашиты выполняются с автоматическим повторным включением питании после некоторого времени или с ограниче­нием мощности, отдаваемой нагрузке.


    Схема устройства защиты от перегрузок по току (и потребля­емой мощности) показана на рис. 126. Устройство работает следу­ющим образом. Напряжение с вторичной обмотки трансформато­ра тока ТА, используемого в качестве преобразователя тока, вып­рямляется диодом VD1 и сглаживается фильтром R 7, С1. Перемен­ный резистор R1 используется для регулировки порога срабатыва­ния. В качестве порогового устройства используется логический элемент DD1.1, выполненный по КМОП-технологии. Уровни сра­батывания таких элементов стабильны и близки к половине на­пряжения питания микросхемы. При повышенном токе нагрузки после срабатывания элемента DDL ] запускается ждущий мульти­вибратор на основе логических элементов DD1.2 и DD1.3 (одно-вибратор), который формирует отрицательное выходное напря­жение, отключающее (или запирающее) цепь питания нагрузки. Через некоторое время, определяемое временем разряда конден­сатора С2 через резистор R3, одновибратор переключается в ис­ходное (ждущее) состояние с формированием на выходе скачка положительного напряжения. Это напряжение соответствует сиг­налу включения питания нагрузки или восстановлению нормаль­ного рабочего состояния источника питания.

    Рис. 126. Электрическая схема устройства защиты от перегрузок по току с автоматическим восстановлением рабочего состояния источника питания

    Аналогично работают устройства защиты от повышения на­пряжения и температуры, т.е. при скачке температуры или напря­жения соответствующий сигнал подается на логический элемент DD1.1, который запускает одновибратор, отключающий питание на определенное время.

    В заключение необходимо отметить, что выбор схемы вторично­го источника питания и параметров

    ее элементов определяется уров­нем требований к коэффициенту стабилизации напряжения и мощ­ностью, необходимой для питания электронной аппаратуры. Для очень мощной аппаратуры (1... 100 кВт - звуковая аппаратура кон­цертных залов, радиостанции и т. п.), а также на транспортных сред­ствах с управляемым приводом требования к стабильности напряже­ния ниже. В них используются мощные выпрямительные установки для трехфазного напряжения с использованием тиристоров.

    КАТЕГОРИИ

    ПОПУЛЯРНЫЕ СТАТЬИ

    © 2024 «strizhmoscow.ru» — Все об устройство автомобиля. Информационный портал