Голографический экран: описание, устройство, принцип работы. Голография на лобовом стекле: когда нам ждать стёкол-дисплеев? Большие технологии в маленьком Mercedes

Панель приборов это хорошо, но когда дополнительно выводится информация на стекло еще лучше. Расскажем о назначении проекционного дисплея, его разновидности, характеристики, стоимость и видео.


Содержание статьи:

Все больше становится популярным проекционный дисплей, по-другому его еще называют HUD или Head-Up Display. Большим преимуществом такой технологии считается безопасность движения и комфорт управления.

Главным назначением является проекция на ветровое стекло автомобиля актуальной информации с панели приборов. Изображение рассчитано таким образом по высоте, чтоб не отвлекая внимание от дороги иметь понятие о состоянии автомобиля и скорости.

Немного предыстории


Впервые подобная технология начала использоваться в авиации, а вот в автомобильную промышленность проекционный дисплей попал только в 1988 году компанией General Motors. Через 10 лет компания GM впервые внедрила эту технологию с цветным дисплеем.

Начиная с 2003 года, проекционный дисплей появился в автомобилях компании BMW. Нынче, система проекции используется во многих автомобилях премиум класса. С каждым годом технология становится дешевле, а значит доступней на автомобилях других бюджетных классов.

Штатный проекционный дисплей


Название говорит само за себя, при покупке автомобиля он предлагается как опциональный. По конструкции система включает в себя проекционный дисплей, проектор и систему управлением проекцией.

Чтоб сформировать изображение производители используют проектор высокой контрастности и насыщенности цветов. Собрав совокупно параметры от разных измерителей автомобиля:

  • датчиков двигателя;
  • навигационная система;
  • система ночного виденья;
  • адаптивный круиз-контроль;
  • распознавания знаков и другие.
В состав проекционного дисплея входят зеркала и линзы, которые фокусируют изображение на ветровое стекло. Так же есть функция подстройки положения дисплея под каждого водителя. Как правило, проекционный дисплей располагается в углублении на панели приборов.

Благодаря проекционному дисплею, водитель получает виртуальное изображение, что позволяет сконцентрировать внимание на дороге. Распознают два вида экрана. Зачастую самым распространенным можно считать специальную, прозрачную пленку, которая клеится на лобовое стекло. Она препятствует рассеиванию изображения при разных погодных условиях. На машинах марки Mini производитель применяет прозрачный экран вместо пленки.


В зависимости от производителя проекционного дисплея и систем, которые он использует, проектироваться может:
  • дублирование разных датчиков панели приборов;
  • сигнал об автомобиле в мертвой зоне;
  • наличие пешеходов на обочине в темное время;
  • скорость автомобиля;
  • обороты двигателя с тахометра;
  • показатели с навигационной системы;
  • сигнал о разных дорожных знаках.
Так как технологии развиваются, и автомобили добавляются все новыми и новыми системами, на проекционный дисплей выводятся новые данные. Определенного списка выводимой информации нет.


Плюсом такого дисплея считается универсальность и простота установки. Собой представляет портативный проектор, который можно установить в удобном месте для водителя и выводить картинку на ветровое стекло.

Самыми распространенными считаются приборы компании Garmin. Устанавливается непосредственно на торпеду. Вторым производителем считается Pioneer, по инструкции она крепится на солнцезащитный козырек. В этом случае видеосигнал поступает на проектор через смартфон по Bluetooth или USB кабелю.

Сразу стоит учесть, что функциональный набор мобильного проекционного дисплея в разы меньше, чем штатного. Чаще всего в мобильный прибор включает показатели системы навигации, скорость автомобиля, но для этого нужен смартфон и установленное на него специальное программное обеспечение.

Из популярных мобильных проекторов считается аппарат от Navdy. Дисплей можно подключить к смартфону через систему Wi-Fi или Bluetooth, так же можно подключить его к бортовому компьютеру, через разъем диагностики.


Благодаря бортовому компьютеру, на проекционный дисплей может выводиться информация с различных датчиков панели приборов. Встроенная инфракрасная камера позволит реализовать жесткое управление проекционным дисплеем с дополнительного пульта управления.


Самым простым из способов реализации проекционного дисплея можно сделать из обычного смартфона. В основе такого будет лежать специальная программа, с помощью которой выводится определенная информация на экран смартфона.

Сам же смартфон располагается на панели приборов, изображение с дисплея смартфона проектируется (отображается) на лобовое стекло, тем самым показывая водителю нужную информацию.

Программа искажает изображение в зеркальном виде так, чтоб на стекле была правильная, читабельная информация. Но все же заменить стационарный не один из выше наведенных дисплеев, не сможет.

Цена дисплея

Стоимость штатного дисплея будет зависеть от производителя, в среднем его цена как опции будет составлять от 500 евро. Если взять за основу мобильный проекционный дисплей компании Garmin, то его цена колеблется от 200 евро. Самый дешевый и простой способ это использование смартфона, достаточно купить специальную подставку за пару тысяч рублей и установить возле ветрового стекла и добавить свой смартфон.

Стоит отметить, что технология проекционного дисплея только на ветровое стекло только начинает развиваться. Считается, что в будущем система Head-Up Display будет выводить на лобовое стекло полностью всю необходимую информацию, в том числе изображении с боковых зеркал заднего вида.

Видео принципа работы проекционного дисплея:



Настало время выяснить какую электронику стоит ждать в автомобилях уже в ближайшем будущем. Давайте постараемся представить, какие еще гаджеты и технологии, возможно, станут такими же привычными как автомагнитолы или видеорегистраторы.

Беспроводные сети в автомобиле

Производители полупроводниковых решений для связи уже выпускают специальные версии чипов для автомобилей предназначенные для автомобильных информационно-развлекательных систем. В зависимости от необходимости, используя связку Wi-Fi+Bluetooth, медиацентр автомобиля может связываться с носимой электроникой владельца (ведь мы говорим о будущем, где вариантов носимой электроники может быть даже больше чем современные умные часы) и в зависимости от полученной информации разблокировать автомобиль или предупреждать об опасности.


Еще более интересным применением различных комбинаций беспроводных сетей должны будут стать системы наподобие V2X - предусматривающие обмен данными между автомобилем и окружающей инфраструктурой. Vehicular communication systems - автомобильные системы связи, предусматривающие обмен информацией между автомобилями (данные про ДТП, дорожную ситуацию, пробки и т.п.), предусматривающие возможность более эффективно управлять дорожной ситуацией в целом, посредством предоставления информации всем участникам. Существует уже несколько вариантов реализации подобных сетей связи малого радиуса действия (DRSC). Технически, работать они должны в частотном диапазоне 5.9 ГГц (5.85-5.925 ГГц), с примерным радиусом действия до 1000 метров. Стандарт этот получил название IEEE 802.11p (WAVE), и был утвержден в 2010 году.


В 1999 году, эта частота в США была закреплена для создания интеллектуальной транспортной системы (ИТС). ИТС будущего можно рассматривать как систему, в которой применяются информационные и коммуникационные технологии в сфере автотранспорта (включая инфраструктуру, транспортные средства, участников системы, а также дорожно-транспортное регулирование), и имеющую наряду с этим возможность взаимодействия с другими видами транспорта. Для работы подобных систем могут использоваться также и традиционные технологии WiMAX, GSM, 3G или 4G/5G. Рассматривая ныне существующие варианты решений для беспроводных сетей в авто, можно с уверенностью предположить что связь или «подключенность» автомобиля к глобальной сети, в том или ином виде фактически неизбежно.

Мобильные операционные системы для авто


Современных автомобилистов уже не удивить медиацентром, работающим под управлением Android OS. Чаще всего встретить Android можно на головном устройстве автомобиля (в случае если вы используете современный видеорегистратор, то Android можно обнаружить даже… в зеркале заднего вида CANSONIC SKY).


Однако на самом деле, планы компаний простираются гораздо дальше и примером таких решений будущего можно назвать Android Auto, представленную корпорацией Google в 2014 году. При поддержке двадцати восьми производителей автомобилей и компании Nvidia, оптимизированная для автомобилей «мобильная» операционная система борется за право произвести революцию среди «зоопарка» разнообразных проприетарных операционных систем в медиацентрах. Где-то мы это уже видели, не так ли? Подобно тому, как Android на смартфонах со временем потеснил собственные операционные системы различных производителей, можно делать ставку на повторение этого сценария на автомобилях. В текущем виде система уже обладает неплохой функциональностью - поддерживает GPS навигацию, проигрывание музыки, SMS, телефонию, веб-поиск, сенсорные экраны и возможность управления аппаратными переключателями и кнопками, вместе с голосовым управлением. На данный момент Android Auto делает ставку на наличие (и подключение к автомобилю) основного Android-устройства водителя, выступая скорее интерфейсом для удобной интеграции привычных функций смартфона в авто. Такой подход имеет свои преимущества - учитывая скорость обновления и возрастающую мощность современных мобильных платформ, отсутствие собственной встроенной (а значит и заведомо устаревающей с каждым годом) электроники даст возможность получения новых функций просто методом подключения нового смартфона. Автомобиль выступает в роли «обычной» док-станции - возможно сейчас это звучит странно, но в будущем такой сценарий вовсе не исключен.

Беспилотные автомобили и электромобили


Конечно, какое же будущее без самоуправляемых автомобилей! Однако почти всех, кто представляет себе самоуправляемые автомобили серьезно отличающимися от классических автомобилей с ручным управлением, ожидает небольшое разочарование. Единственным современным концептом автомобиля «без руля и педалей» стали самоуправляемые автомобили от Google. Большинство же самоуправляемых концептов (в том числе те, которые получили право на движение на дорогах общего пользования в некоторых штатах США) предполагают возможность возвращения к ручному управлению в любой момент. Таким образом, для водителя и пассажиров использование самоуправления не приносит внешних серьезных изменений в интерьер автомобиля. Современные самоуправляемые автомобили достигают значительных успехов, так например в этом году самоуправляемый автомобиль сумел обогнать водителя-гонщика, правда, преимущество было очень небольшим - всего 0,4 секунды.

Подобная ситуация повторяется и для электромобилей и гибридов. Если не учитывать стоящую особняком компанию Tesla, автопроизводители всячески стремятся унифицировать опыт использования электромобилей, гибридов и автомобилей с ДВС. Так что во множестве случаев отличить электромобиль от обычного авто (кроме звука мотора) можно разве что по дополнительным индикаторам заряда на приборной панели и наличию гнезда зарядки вместо горловины бензобака.


Голографические HUD дисплеи


Еще в 2006 году компания Light Blue Optics Ltd заявила о приобретении лицензии на производство полноцветных голографических лазерных проекторов. Сама технология была изобретена Эдвардом Бакли и Адрианом Кэйблом в 2003 году в университете города Кембридж. Начиная с 2009 года эту систему начали адаптировать для использования в дисплеях, не требующих отвлечения внимания водителя от дороги (head-up display, HUD). Вариантов проецирования изображения на лобовое стекло автомобиля нашлось множество - это и полноцветные лазерные голограммы и существенно более простые решения (отражение зеркального изображения яркого монохромного дисплея от стекла). Пока что автопроизводители не спешат оснащать все новые модели HUD дисплеями, но такие примеры есть - в 2014 такую систему получил Range Rover Evoque, а компания Ford делает ставку на систему MISHOR 3D, с подобными функциями. HUD дисплеи надежно завоевали лобовые стекла самолетов (в первую очередь военных), но в автомобилях будущего (особенно самоуправляемых) такая система вывода информации будет смотреться более чем уместно.

Дополненная реальность в автомобилях


Зачем ограничивать область возможного проецирования лобовым стеклом? Примерно такими рассуждениями руководствовались авторы современных концептов систем дополненной реальности. Это и система «прозрачный капот» в автомобилях Land Rover (система позволяет водителю видеть поверхность дороги, которая в обычных условиях скрыта, реализуется при помощи камер и проекторов внутри салона автомобиля) и концепт виртуального экрана с «подсказками» касательно необходимой траектории движения (точно как в серии игр NFS Shift).

Более экстравагантным решением является концепт полностью прозрачного автомобиля японского университета Кэйо. В нем заднее сиденье автомобиля становится прозрачным, чтобы не преграждать водителю обзор при езде задним ходом. Сзади автомобиля находится проектор, который проецирует изображение на отражающий экран, расположенный между двумя передними сиденьями и чуть позади них.


Когда водитель оборачивается назад через плечо, он видит практически настоящий вид сзади от машины, но только через дополненную реальность. Концепт, безусловно интересный, но явно не учитывающий наличия пассажиров в салоне автомобиля. Скорее всего, подобные системы все же завоюют автомобили будущего, в том или ином виде проецируя изображение в виде дополненной реальности.

Альтернативные способы управления

Кроме голосового управления или ввода желаемого маршрута через сенсорный экран (в гипотетическом самоуправляемом автомобиле будущего) автопроизводители экспериментируют и с более экзотическими способами управления - в том числе с управлением жестами. Еще в 2012 году Mercedes-Benz, представлял концепт салона под названием DICE (Dynamic & Intuitive Control Experience).


Вместо лобового стекла предлагалось использовать дисплей, а при помощи датчиков отслеживать положение руки водителя или переднего пассажира в пространстве и следить за её движениями для регулирования и настройки функций авто. Даже с экранами сверхвысокого разрешения, вряд ли водители в скором времени согласятся использовать их вместо лобового стекла. Систему управления жестами в том же году демонстрировала и Audi, но там она использовалась для смены режимов HUD дисплея. Так что кроме датчиков, следящих за пристегнутым ремнем безопасности или наличием пассажиров в салоне, в салоне будущего можно ожидать наличие куда большего количество разнообразных «следящих систем», наподобие Leap Motion.

Социальные сети будущего и автомобили


Уже сегодня социальные сети и сервисы «для автомобилистов» способны существенно влиять на дорожную ситуацию. Примеров тому множество - на такие приложения как Waze (краудсорсинговый проект на основе пользовательских данных, с помощью которого участники проекта узнают о возникновении проблем на дорогах) обращает внимание даже полиция, выступая как с критикой, так и с одобрением. Возможность уведомлений о местонахождении патрулей вызвала беспокойство правоохранительных органов за безопасность сотрудников полиции. Примеры социального взаимодействий на уровне «автомобиль-автомобиль» или «автомобиль-инфраструктура» могут приобретать разные формы - это и программы лояльности от заправок, бесплатные электрозаправки для электромобилей, оптимизация паркомест в городе в зависимости от заполненности, системы вызова такси без диспетчера, «гэймификация» и «достижения» (к примеру начисление баллов за безопасную езду) при использовании автомобиля. Большинство этих функций не вызывают удивления сами по себе, но они несомненно будут развиваться в будущих автомобилях.

Послесловие

Конечно, угадать какими будут автомобили или их электроника через несколько десятков лет с большой достоверностью почти не представляется возможным. Очевидно что автоэлектронику ожидает качественный скачок, ведь с каждым годом концепты на автовыставках начинают напоминать настоящие «автомобили из будущего», которые мы представляли лишь в фантастических произведениях. Осталось лишь немного подождать и мы увидим какие еще технологии будущего покажутся нам такими же привычными, как автомагнитола или видеорегистратор.

Запустить софт для моделирования и вывести полноразмерную модель для редактирования в пространстве. Включить коммуникатор и побеседовать не с плоским изображением собеседника на видеозвонке, а с его объемной проекцией, через которую просвечивает любимый ковер. Отодвинуть штору и увидеть на оконном стекле прогноз погоды, ситуацию с пробками, и вообще - как оно там. Завести двигатель автомобиля и получать на участке лобового стекла дополнительные оповещения о дорожной разметке, возможных опасностях и иных важных сведениях.

Если раньше все это было уделом научных фантастов, то сейчас подобное перешло из разряда “Фантастика” в разряд “Ближайшее будущее”. О том, как современные ученые приближают век голографии, с чего все начиналось и какие трудности развития голографические технологии испытывают на данный момент, мы постараемся рассказать в этом посте.

Как создаются голографические изображения

Человеческий глаз видит физические объекты, так как от них отражается свет. Построение голографического изображения основано именно на этом принципе – создается пучок отраженного света, полностью идентичный тому, который отражался бы от физического объекта. Человек, смотря на этот пучок, видит тот же самый объект (даже если смотрит на него под разными углами).

Голограммы же более высокого разрешения - это статические рисунки, “холст” которых - фотополимер, а “кисть” - лазерный луч, который разово меняет структуру фотополимерных материалов. В итоге обработанный таким образом фотополимер создает голографическое изображение (на плоскость голограммы падает свет, фотополимер создает его тонкую интерференционную картину).

К слову, про саму интерференцию. Она возникает в случае, если в определенном пространстве складывается ряд электромагнитных волн, у которых совпадают частоты, причем с довольно высокой степенью. Уже в процессе записи голограммы в конкретной области складывают две волны – первая, опорная, исходит непосредственно от источника, вторая, объектная – отражается от объекта. Фотопластину с чувствительным материалом размещают в этой же области, и на ней возникает картина полос потемнения, соответствующих распределению электромагнитной энергии (интерференционная картина). Затем пластину освещают волной, близкой по характеристикам к опорной, и пластина преобразует эту волну в близкую к объектной.

В итоге получается, что наблюдатель видит примерно такой же свет, который отражался бы от изначального объекта записи.

Краткая историческая справка

Шел 1947-й год. Индия получила независимость от Британии, Аргентина предоставила избирательные права женщинам, Михаил Тимофеевич Калашников создал свой знаменитый автомат, Джон Бардин и Уолтер Браттейномиз проводят эксперимент, позволивший создать первый в мире действующий биполярный транзистор, начинается производство фотоаппаратов Polaroid.

А Деннис Габор получает первую в мире голограмму.

Вообще, Деннис пытался повысить разрешающую способность электронных микроскопов той эпохи, но в ходе направленного на это эксперимента получил голограмму.

Увы, Габор, как и многие умы, немного опередил свое время, и у него просто не было нужных технологий, чтобы получать голограммы хорошего качества (без когерентного источника света этого сделать невозможно, а первый лазер на кристалле искусственного рубина Теодор Мейман продемонстрирует лишь 13 лет спустя).

А вот после 1960-го (красный рубиновый лазер с длиной волны 694 нм, импульсный, и гелий-неоновый, 633 нм, непрерывный) дело пошло куда бодрее.

1962 . Эммет Лейт и Юрис Упатниекс, Мичиганский Технологический Институт. Создание классической схемы записи голограмм. Записывались пропускающие голограммы – в процессе восстановления голограммы свет пропускали через фотопластину, но некоторая часть света отражается от пластины и тоже создает изображение, которое видно с противоположной стороны.

1967 . Первый голографический портрет записывают при помощи рубинового лазера.

1968 . Совершенствуются и сами фотоматериалы, благодаря чему Юрий Николаевич Денисюк разрабатывает собственную схему записи и получает высококачественные голограммы (восстанавливали изображение путем отражения белого света). Все проходит вполне неплохо, настолько, что схема записи получает название “Схема Денисюка”, а голограммы - “Голограммы Денисюка”.

1977 . Мультиплексная голограмма Ллойда Кросса, состоящая из нескольких десятков ракурсов, каждый из которых можно увидеть только под одним углом.

Плюсы - размеры объекта, которые требуется записать, не ограничиваются длиной волны лазера или размером фотопластины. Можно создать голограмму предмета, которого не существует (то есть просто нарисовав придуманный предмет в сразу нескольких ракурсах).

Минусы - отсутствие вертикального параллакса, рассмотреть такую голограмму можно только по горизонтальной оси, но не сверху или снизу.

1986 . Абрахам Секе осознает, что нет предела совершенству, и предлагает создать источник когерентного излучения в приповерхностной области с помощью рентгеновского излучения. Пространственное разрешение в голографии всегда зависит от размеров источника излучения и его удаленности от предмета – это дало возможность восстановить в реальном пространстве атомы, которые окружали эмиттер.

Сейчас

Сегодня некоторые прототипы голографических видеодисплеев работают примерно так же, как и современные ЖК-мониторы: особым образом рассеивают свет, формируя псевдо-3D, а не создают интерференционную картину. С чем связан и главный минус такого подхода - нормально оценить такую картинку сможет только один человек, сидящих под правильным углом к монитору. Все остальные зрители будут не так впечатлены.

Конечно же, любители научной фантастики и новых технологий спят и видят, как голографические дисплеи станут такой же привычной вещью, как wifi дома или фотокамера в смартфоне, сравнимая с не самой плохой мыльницей. И хотя идеальная голограмма в понимании большинства - это на самом деле не сегодня и не завтра, разработки на эту тему уже активно ведутся.

Институт науки и передовых исследований, Корея. Рабочий прототип нового 3D-голографического дисплея, ТТХ которого примерно в пару тысяч раз лучше , чем у существующих аналогов.

Слабое звено таких дисплеев - матрица. Пока матрицы состоят из двухмерных пикселей. Корейцы же использовали обычный (но хороший) дисплей вкупе со специальным модулятором для фронта оптического импульса. Результатом стала высококачественная голограмма, правда, небольшая - 1 кубический сантиметр.

Было время, когда считалось, что рассеивание света - это серьезное препятствие для нормального распознавания проецируемых объектов. Но как показывает наша практика, современные 3D-дисплеи можно существенно улучшить, научившись контролировать это рассеивание. Правильное рассеивание позволило увеличить и угол обзора, и общую разрешающую способность,
- отмечает профессор Йонкен Парк .

Университет Гриффита, Технологический университет Суинберна, Австралия. Голографический дисплей на основе графена.

Ученые вооружились методом Габора, упоминавшимся в самом начале этого поста, и сделали 3D-голографический дисплей высокого разрешения на основе цифрового голографического экрана, состоящего из мелких точек, отражающих свет.

Плюсы – угол обзор в 52 градуса. Для нормального восприятия картинки не нужны никакие дополнительные приблуды в виде 3D-очков и прочего.

К слову, о 52 градусах. Угол обзора тем больше, чем меньше будет использоваться пикселей. Оксид графена обрабатывают путем фоторедукции, что создает пиксель, которому под силу изгибать цвет для голокартинки.

Разработчики полагают, что подобный подход в свое время сможет положить начало революции в разработке дисплеев, особенно - на мобильных устройствах.

Бристольский университет, Великобритания. Ультразвуковая голография.

Объект создается в воздухе с помощью множества ультразвуковых излучателей, направленных на облако водяного пара, которое также создается системой. Реализация, конечно, сложнее, чем в случае с привычными экрана, но все же.

  • туман создается не просто каплями воды, а каплями специального вещества.
  • это вещество освещается специальной лампой.
  • лампа модулирует специальный свет.

В итоге получается проекция объекта, который можно не только рассмотреть со всех сторон, но и потрогать.

Частота колебаний такой интерференционной картины - от 0.4 до 500 Гц.

Одно из главных направлений деятельности, в котором разработчики предполагают полезное использование технологии - медицина. Врач сможет на основе данных медкарты и смоделированного органа “почувствовать” его. Также можно будет создавать объемные проекции каких-либо товаров на презентациях. Положительный эффект предрекают и при замене подобной технологией сенсорных дисплеев в местах массового пользования (электронные меню, терминалы, банкоматы). Как сложно и дорого будет это внедрить - само собой, уже второй вопрос.

А уж до чего могут дойти развлекательные сервисы определенной направленности - страшно (но интересно) подумать.

Ванкувер, Канада. Интерактивный голографический дисплей.

Что нужно:

  • мобильное устройство
  • HDMI или wifi
  • пожертвовать 550$ на Кикстартере вот

Плазменные панели и LCD-экраны давно никого не удивляют, заняв свое место в повседневной жизни. Привычной стала и появившаяся в последние годы технология создания стереоскопического изображения с использованием 3D-очков, занявшая свою нишу и активно развивающаяся. Большинство экспертов придерживаются мнения, что дальнейшим этапом развития дисплейных технологий станет появление голографического проекционного экрана, что вполне логично, поскольку современное 3D-телевидение является промежуточным этапом на пути формирования объемного изображения, поскольку трехмерное изображение на таких экранах видно только при определенном положении головы. Голографические дисплеи можно рассматривать как следующую ступень развития 3D-технологий.

Принцип 3D-технологий

В современных кинотеатрах и TV используется 3D-технология, основывающаяся на обмане человеческого зрения посредством представления глазам незначительно отличающихся друг от друга картинок, что в итоге и создает трехмерный эффект. Оптический фокус широко применяется в 3D-технике: к примеру, иллюзия глубины и объема изображения создается при помощи поляризационных очков, которые фильтруют часть изображения для левого и правого глаза.

Недостаток технологии 3D

Минусом данной технологии является то, что объемное изображение видно только под определенным углом. Несмотря на то что в продаже имеются домашние телевизоры с эффектом 3D и без очков, смотреть их зритель может, только если будет находиться точно напротив дисплея. Объемное изображение начинает пропадать при небольшом смещении вправо или влево относительно центра экрана, что является основным недостатком всех 3D-дисплеев. Решить данную проблему должны в ближайшем будущем голографические экраны.

Псевдоголографические дисплеи

На сегодняшний день большой популярностью пользуются псевдоголографические экраны, созданные на базе полупрозрачной сетки или пленки. Панели крепятся к потолку или торговой витрине. При грамотном освещении панели незаметны для человека, и если на них проецируется изображение, то создается впечатление голограммы, сквозь которую зритель может смотреть. В сравнении с и плазмой псевдоголографические экраны обладают рядом преимуществ: ярким изображением, оригинальностью, возможностью установки в любом помещении.

Проектор, который проецирует изображение, может быть скрыт от зрителя. Преимуществами подобного оборудования являются широкие углы обзора, высокая контрастность изображения и возможность создавать голографические экраны определенного размера и формы. Дисплеи на полупрозрачной пленке используются для придания необычного эффекта и шарма помещению, оформления телевизионных студий и торговых пространств. Прозрачные панели выпускаются многими компаниями и используются в рекламных и маркетинговых целях.

Экраны Sax3D

Одними из самых популярных считаются голографические экраны Sax3D от немецкой компании, созданные с использованием технологии избирательного преломления света, благодаря чему система игнорирует любой свет в помещении за исключением луча проектора. Сам дисплей выполнен из прочного прозрачного стекла, поверх которого наносится тонкая пленка, превращающая экран в голограмму и отображающая проецируемое проектором контрастное изображение. Подобный голографический экран позволяет просматривать как цифровые снимки, так и видеоролики. По аналогичному принципу работают дисплеи Transscreen, созданные из полиэфирной пленки со специальными слоями, задерживающими идущий со стороны проектора свет.

Голографические телевизоры

Обывателей в большей степени интересуют не специализированные экраны, а решения, которые могут быть использованы в планшетных компьютерах, телевизорах и смартфонах с голографическим экраном. Стоит отметить, что в данной области за последние годы появилось большое количество оригинальных решений, несмотря на то что основная часть из них работает на усовершенствованном эффекте 3D.

Компания InnoVision на выставке CES 2011 представила публике прототип телевизора с голографическим экраном под названием HoloAd Diamond. При создании TV используется призма, преломляющая идущий от нескольких проекторов свет и создающая полноценную голограмму, которую зритель может рассматривать под разными углами. Посетители выставки и журналисты во время демонстрации смогли убедиться в том, что подобная голограмма значительно превосходит изображения, создаваемые классическими 3D-устройствами, по насыщенности и глубине цветов.

Телевизор HoloAd может воспроизводить изображения, фотографии и видеоролики в формате FLV в виде голограммы. На выставке компания представила две модели TV, основанные на аналогичном принципе: разрешение первой составляет 1280х1024 точки, вес - 95 килограмм, разрешение второй - 640х480 точек. Несмотря на то что телевизоры довольно габаритные, пользоваться ими удобно и комфортно.

Разработка технологии

Специалисты лаборатории HP, расположенной в Пало-Альто, предприняли попытки устранить извечную проблему экранов с 3D-эффектом. Для воспроизведения объемного изображения, видимого с любой точки обзора, исследователями было предложено показывать изображение с разных сторон, посылая для каждого глаза зрителя отдельную картинку. Подобная технология подразумевает использование системы с лазерными установками и вращающимися зеркалами, однако калифорнийские ученые прибегли к комплектующим обычной жидкокристаллической панели, нанеся на внутреннюю поверхность стекла экрана большое количество канавок круглой формы. В результате это позволило преломить свет таким образом, чтобы создать перед зрителем трехмерную голограмму. Экран, созданный специалистами HP, демонстрирует зрителям статическое трехмерное изображение, проецируемое с двухсот точек, а динамичную картинку - с шестидесяти четырех.

Телефон с голографическим экраном

Сравнительно недавно наконец-то состоялось ожидаемое многими событие - был официально представлен смартфон с голографическим дисплеем. Используемая в телефоне Red Hydrogen One технология отображения отличается дороговизной, однако в ближайшем будущем будет использоваться на многих мобильных устройствах.

Компания Red в основном специализируется на производстве профессиональных цифровых кинокамер, однако теперь она обратила внимание на новую отрасль, разработав и представив смартфон с голографическим экраном Red Hydrogen One.

Дисплей телефона

Специалисты компании Red заявили, что экран, установленный на смартфон, представляет собой водородный голографический дисплей, позволяющий мгновенно переключаться между 2D-контентом, 3D-контентом и голографическим содержимым приложения Red Hydrogen 4-View. Несмотря на то что точных сведений о принципе данной технологии так и не было опубликовано, смартфон позволяет просматривать все голограммы без использования специальных очков или дополнительных аксессуаров.

Демонстрация смартфона Red с голографическим экраном прошла в июне 2017 года, однако никаких подробностей производителем до сих пор не было разглашено. Впрочем, есть несколько счастливчиков-блогеров, которым удалось подержать в руках два прототипа смартфона: один - нефункциональный макет, демонстрирующий отделку и внешний вид телефона, второй - рабочий аппарат, который компания все еще держит в секрете.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «strizhmoscow.ru» — Все об устройство автомобиля. Информационный портал