Ионный двигатель - новые космические горизонты. Самый мощный ионный двигатель прошёл проверку

Европейское космическое агентство провело испытания прямоточного ионного двигателя, использующего в качестве рабочего тела воздух из окружающей атмосферы. Предполагается, что небольшие спутники с таким двигателем смогут практически неограниченно находиться на орбитах с высотой 200 или менее километров, сообщается в пресс-релизе агентства.

Принцип работы ионных двигателей основан на ионизации частиц газа и их разгоне с помощью электростатического поля. Частицы газа в таких двигателях разгоняются до значительно больших скоростей, чем в химических двигателях, из-за чего ионные двигатели имеют гораздо больший удельный импульс и расходуют меньше топлива. Но у ионных двигатель есть и важный недостаток - крайне малая тяга, по сравнению с химическими двигателями. Из-за этого они редко применяются на практике, в основном на небольших аппаратах. К примеру, такие двигатели используются на зонде Dawn, сейчас на орбите карликовой планеты Церера, и будут использоваться в миссии BepiColombo , которая должна отправиться к Меркурию в конце 2018 года.

Как и в химических двигателях, в используемых сейчас ионных двигателях применяется запас топлива, как правило, ксенона. Но существует и концепция прямоточных ионных двигателей, которая, правда, пока не применялась на летавших в космос аппаратах. Ее отличие заключается в том, что в качестве рабочего тела предлагается использовать не конечный запас газа, загружаемый в бак перед запуском, а воздух из атмосферы Земли или другого атмосферного тела.


Схема работы двигателя

ESA–A. Di Giacomo

Предполагается, что относительно небольшой аппарат с таким двигателем сможет практически неограниченно находиться на низких орбитах с высотой примерно от 150 километров, компенсируя атмосферное торможение тягой двигателя, работающего на поступающем в него воздухе из атмосферы. В 2009 году ESA запустило спутник GOCE , который смог за счет постоянно включенного ионного двигателя с запасом ксенона пробыть на 255-километровой орбите в течение почти пяти лет. После этого агентство занялось разработкой прямоточного ионного двигателя для аналогичных низкоорбитальных спутников, и теперь провело первые испытания такого двигателя.

Испытания проходили в вакуумной камере, в которой располагался двигатель. Изначально в него подавали ускоренный ксенон. После этого в газозаборное устройство начали добавлять смесь кислорода с азотом, имитирующую атмосферу на высоте 200 километров. В конце испытаний инженеры провели тесты с исключительно воздушной смесью для проверки работоспособности в основном режиме.


Испытания двигателя с воздухом в качестве топлива


Прямоточный ионный двигатель

Проблема перемещения в космосе стоит перед человечеством с момента начала орбитальных полетов. Ракета взлетая с земли расходует практически все свое топливо, плюс заряды ускорителей и ступеней. И если ракету еще можно оторвать от земли, заправив её огромным количеством топлива, на космодроме, то в открытом космосе заправляться попросту негде и нечем. А ведь после выхода на орбиту нужно двигаться дальше. А топлива нет.

И в этом то и состоит основная проблема современной космонавтики. Выбросить на орбиту корабль с запасом топлива до луны еще можно, под эту теорию строятся планы создать на луне базу дозаправки «дальнобойных» космических кораблей, летящих например на Марс. Но это все слишком сложно.

А решение проблемы было создано очень давно, еще в 1955 году, когда Алексей Иванович Морозов опубликовал статью «Об ускорении плазмы магнитным полем». В ней он описывал концепцию принципиально нового космического двигателя.

Устройство ионно плазменного двигателя

Принцип действия плазменного двигателя состоит в том, что рабочим телом выступает не сгорающее топливо, как в реактивных двигателях, а разогнанный магнитным полем до безумных скоростей поток ионов.

Источником ионов служит газ, как правило это аргон или водород, бак с газом стоит в самом начале двигателя, оттуда газ подается в отсек ионизации, получается холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева, высокоэнергетическая плазма подается в магнитное сопло, где она формируется в поток посредством магнитного поля, разгоняется и выбрасывается в окружающую среду. Таки образом достигается тяга.

С тех пор плазменные двигатели прошли большой путь и разделились на несколько основных типов, это электротермические двигатели, электростатические двигатели, сильноточные или магнитодинамические двигатели и импульсные двигатели.

В свою очередь электростатические двигатели делятся на ионные и плазменные (ускорители частиц на квазинейтральной плазме).

В данной статье мы напишем про современные ионные двигатели и их перспективные разработки, так как на наш взгляд именно за ними будущее космического флота.

Ионный двигатель использует в качестве топлива ксенон или ртуть. Первый ионный двигатель назывался сетчатый электростатический ионный двигатель.


Принцип его действия таков:

В ионизатор подается ксенон , который сам по себе нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны.

Положительные же ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против - 225 на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона.

Российские ионные двигатели. На всех хорошо видны катодные трубки, направленные в сторону сопла

Электроны, пойманные в катодную трубку выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается по двум причинам:

Во первых чтобы корпус корабля оставался нейтрально заряженным, а во вторых чтобы ионы «нейтрализованные» таким образом не притягивались обратно к кораблю.

Чтобы ионный двигатель работал нужны всего две вещи - газ и электричество. С первым все просто отлично, двигателю американского межпланетного аппарата Dawn, который стартовал осенью 2007-го, для полета в течении почти 6 лет потребуется всего 425 килограммов ксенона. Для сравнения для корректировки орбиты МКС с помощью обычных ракетных двигателей каждый год затрачивается 7,5 тонн горючего.

Одно плохо - ионные двигатели имеют очень небольшую тягу, порядка 50-100 миллиньютонов, что абсолютно недостаточно при перемещении в атмосфере Земли. Но в космосе, где нет практически никаких сопротивлений, ионный двигатель при длительном разгоне может достигнуть значительных скоростей. Общее приращение скорости за всё время миссии Dawn составит порядка 10 километров в секунду.

Тест ионного двигателя для корабля Deep Space

Недавние испытания проведенные американской компанией Ad Astra Rocket, проведенные в вакуумной камере показали, что их новый Магнитоплазменный двигатель с переменным удельным импульсом” (Variable Specific Impulse Magnetoplasma Rocket) VASIMR VX-200может дать тягу уже в 5 ньютонов.

Второй вопрос - электричество. Тот же VX-200 потребляет 201 кВт энергии. Солнечных батарей такому двигателю просто мало. Следовательно необходимо изобретать новые способы получения энергии в космосе. Тут есть два пути - заправляемые батареи например тритиевые, выводимые на орбиту вместе с кораблем, либо автономный атомный реактор, который и будет питать кораблю на протяжении всего полета.

Еще в 2006 году Европейское космическое агентство (European Space Agency) и Австралийский национальный университет (Australian National University) успешно провели испытания нового поколения космических ионных двигателей, достигнув рекордных показателей.

Двигатели, в которых заряженные частицы ускоряются в электрическом поле — давно известны. Они применяются для ориентации, коррекции орбиты на некоторых спутниках и межпланетных аппаратах, а в ряде космических проектов (как уже осуществившихся, так и только задуманных — читайте , и ) — даже в качестве маршевых.

С ними специалисты связывают дальнейшее освоение Солнечной системы. И хотя все разновидности так называемых электроракетных двигателей сильно уступают химическим в максимальной тяге (граммы против килограммов и тонн), зато кардинально превосходят их в экономичности (расходе топлива на каждый грамм тяги за секунду). А эта экономичность (удельный импульс) прямо пропорционально зависит от скорости выбрасываемой реактивной струи.

Так вот, в опытном двигателе, названном «Двухступенчатый с четырьмя решётками» (Dual-Stage 4-Grid — DS4G), построенном по контракту ESA в Австралии, скорость эта достигла рекордных 210 километров в секунду.

Это, к примеру, раз в 60 выше, чем скорость выхлопа у хороших химических двигателей, и в 4-10 раз больше, чем у прежних «ионников».

Как ясно из названия разработки, такая скорость достигнута двухступенчатым процессом разгона ионов при помощи четырёх последовательных решёток (вместо традиционных одной стадии и трёх решёток), а также высоким напряжением — 30 киловольт. Кроме того, расхождение выходного реактивного пучка составило всего 3 градуса, против примерно 15 градусов — у прежних систем.

А вот информация последних дней.


Ионный двигатель (ИД) работает просто: газ из бака (ксенон, аргон и пр.) ионизируется и разгоняется электростатическим полем. Поскольку масса иона мала, а заряд он может получить значительный, ионы вылетают из двигателя со скоростями до 210 км/с. Химические двигатели могут достичь… нет, ни чего-то подобного, а всего лишь в двадцать раз меньшей скорости истечения продуктов сгорания лишь в исключительных случаях. Соответственно, расход газа в сравнении с расходом химического топлива крайне мал.


Именно поэтому на ИД полностью или частично работали и работают такие «дальнобойные» зонды, как Hayabusa , Deep Space One и Dawn . И если вы собираетесь не просто по инерции лететь до далёких небесных тел, но и активно маневрировать близ них, то без таких двигателей не обойтись.



В 2014 году ионные двигатели справляют полувековой юбилей в космосе. Всё это время проблему эрозии не удавалось решить даже в первом приближении. (Здесь и ниже илл. NASA, Wikimedia Commons.)

Как и всё хорошее, ИД любит, чтобы его питали: на один ньютон тяги нужно до 25 кВт энергии. Представим, что нам поручили запустить 100-тонный космический корабль к Плутону (вы уж простите нас за мечтательность!). В идеале даже для Юпитера нам потребуется 1 000 ньютонов тяги и 10 месяцев, а до Нептуна на той же тяге — полтора года. В общем, давайте про Плутоны всё-таки не будем, а то грустно как-то…

Ну а чтобы получить эти пока умозрительные 1 000 ньютонов, нам потребуется 25 мегаватт. В принципе, ничего технически невозможного — 100-тонный корабль мог бы принять атомный реактор. Кстати, в настоящее время НАСА и Министерство энергетики США работают над проектом Fission Surface Power . Правда, речь идёт о базах на Луне и Марсе, а не о кораблях. Но масса реактора не так уж высока — всего пять тонн, при размерах в 3×3×7 м…


Ну ладно, помечтали и хватит, скажете вы, и тут же вспомните частушку, якобы придуманную Львом Толстым во время Крымской войны. В конце концов, такой большой поток ионов, проходящий через двигатель (а это ключевое препятствие), вызовет его эрозию, и значительно быстрее, чем за десять месяцев или полтора года. Причём это не проблема выбора конструкционного материала — благо разрушаться в таких условиях будут и титан, и алмаз, — а неотъемлемая часть конструкции ионного двигателя per se.


Подготовлено по материалам Gizmag . и http://lab-37.com



А вы в курсе что в России активно работает над ядерным двигателем для ракет или например о том,
что скоро может появится

Основная проблема в освоении космических просторов - крайне низкие скорости у разработанных человечеством летательных аппаратов. Современные разработки имеют также и огромный расход топлива. Таким образом, если построить ракету и запустить ее, например, на Марс и обратно, то корабль будет просто огромный. И большую его часть будет занимать именно топливо. Приблизительно для высадки на Марс нужно более миллиарда тонн высококачественного ракетного топлива. К счастью, такая современная разработка ученых, как ионный двигатель, сможет в недалеком будущем решить эту проблему. Теоретически с его помощью можно разгоняться до двухсот километров за секунду. Основными плюсами можно назвать именно огромные развиваемые скорости и маленький запас горючего. Для работы такого агрегата, как ионный двигатель, нужны лишь электричество и инертный газ. Однако есть у него и некоторые недостатки, например, слабая разгонная скорость. Это заставляет задуматься о многих проблемах применения двигателя в условиях присутствия гравитационных полей.

Ионный двигатель: принцип действия

Благодаря высокому напряжению ионизируется газ в специальной камере. Вследствие этого ионы газа начинают выбрасываться прочь из камеры и создавать тягу. Однако, так как это цепная реакция, и сила тяги увеличивается очень медленно и постепенно, понадобится приблизительно полгода, чтобы разогнаться до двухсот километров в секунду. Примерно такое же количество времени уйдет и на торможение. С другой стороны, объективно эти цифры очень малы в сравнении с показателями у современных космических двигателей, которым на достижение подобных по качеству результатов необходимо было бы затратить в двадцать раз больше времени. Более того, инертный газ занимает в сотни раз меньше места, чем топливо у ракет. Единственная проблема, которую сложно решить - это наличие электричества. Солнечных батарей просто не хватит для работы таких приборов, как ионные двигатели, поэтому вероятно применение ядерного реактора.

Еще одним недостатком можно считать низкую маневренность. Также основным вопросом стоит проблема с гравитацией. Находясь в пределах поля Земли, двигатель просто не будет работать. С другой стороны, в условиях открытого космоса аналогов такого устройства, как ионный двигатель, пока нет.

Немного истории и перспективы

В фантастической литературе подобные приборы встречались довольно часто. Однако только в 1960 году был создан ионный двигатель своими руками (а точнее, руками научных сотрудников НАСА). Он назывался широко-лучевым электростатическим устройством. Уже в начале семидесятых прошли испытание ртутные электростатические двигатели в условиях открытого космоса.

К концу семидесятых генераторы на основе эффекта Холла использовали в Советском Союзе. В качестве именно основного двигателя ионный был применен на американском космическом аппарате в 1998 году. За ним последовали европейский зонд, японский космический корабль в 2003 году. На сегодняшний день НАСА разрабатывает знаменитый проект под названием «Прометей». Для него конструируют супермощный ионный двигатель, который питается от ядерного реактора.

НАСА завершило начатые в июне 2005 году испытания двигательной установки, которая работает на ионизированном газе. Теперь ею можно оснащать космические аппараты, разгоняя их до невиданных ранее скоростей.

Идут испытания ксенонового двигателя нового поколения. (Фото NASA.)

Часто фигурирующие в научной фантастике ионные двигатели применялись на практике ещё в 70-е годы. Тяга в них создаётся за счёт разгона ионизированного газа в электростатическом поле.

Преимуществом подобных ДУ по сравнению с традиционными химическими решениями является высокая эффективность, а именно возможность разогнать аппарат до десятков километров в секунду при малом расходе топлива. Правда, это происходит уже в космическом пространстве при долгой работе ионного двигателя: его стартовая тяга невелика. Поэтому в качестве основной системы, приводящей в движение космический корабль, эту схему начали использовать совсем недавно.

Пионером ионного движения стал американский аппарат Deep Space 1, запущенный в 1998 году. За ним последовали европейский и японский зонды, а последним крупным проектом на сегодня стала автоматическая межпланетная станция Dawn, отправленная НАСА изучать астероид Весту и карликовую планету Цереру.

Ионный двигатель Dawn и стал образцом для создания ксеноновой системы NASA"s Evolutionary Xenon Thruster (NEXT). Разработчики из Исследовательского центра имени Гленна и компании Aerojet смоделировали самые разнообразные миссии, в которых может быть задействована такая ДУ.

С 2005 года NEXT проработал 35,5 тыс. часов, что на 5 тыс. больше предыдущего рекорда. На эксперименты ушло 600 кг ксенона. На основе тестовых моделей инженеры сконструировали двигательную установку из нескольких ионных двигателей, срок службы которых превысит 6 лет, и теперь НАСА остаётся лишь выбрать, в каких миссиях будет удобнее эксплуатировать разработку. Быть может, тут и пригодится космическая программа, предложенная Национальной академией наук США на ближайшую декаду?

Источник: Компьютерра–Онлайн

Ионный двигатель

Ионный двигатель - разновидность электрического ракетного двигателя. Его рабочим телом является ионизированный газ (аргон, ксенон, цезий...).

Принцип действия

Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (вплоть до 210 км/с по сравнению с 3-4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии. Недостаток двигателя в его нынешних реализациях - очень слабая тяга (порядка десятых долей ньютона). Таким образом, нет возможности использовать ионный двигатель для старта с планеты, но, с другой стороны, в открытом космосе, при достаточно долгой работе двигателя есть возможность разогнать космический аппарат до скоростей, недоступных сейчас никаким другим из существующих видов двигателей.

В существующих реализациях для поддержки работы двигателя используются солнечные батареи. Но для работы в дальнем космосе такой способ неприемлем. Поэтому уже сейчас для этих целей иногда используются ядерные установки.

Принцип ионного двигателя довольно давно известен и широко представлен в фантастической литературе, компьютерных играх и кинематографе, но для космонавтики стал доступен только в последнее время.
В 1960 году был построен первый функционирующий широко-лучевой (broad-beam) ионный электростатический двигатель (создан в США в NASA Lewis Research Center). В 1964 году - первая успешная суборбитальная демонстрация ионного двигателя (SERT I) тест на выполнимость нейтрализации ионного луча в космосе.

В 1970 году - испытание на длительную работу ртутных ионных электростатических двигателей в космосе (SERT II). С 1970-х годов ионные двигатели на эффекте Холла использовались в СССР в качестве навигационных двигателей (двигатели SPT-60 использовались в 1970-х годах на «Метеорах», SPT-70 на спутниках «Космос» и «Луч» в 1980-х, SPT-100 в ряде спутников в 1990-х).

В качестве основного (маршевого) двигателя ионный двигатель был впервые применён на космическом аппарате Deep Space 1 (первый запуск двигателя 10 ноября 1998). Следующими аппаратами стали европейский лунный зонд Смарт-1, запущенный 28 сентября 2003, и японский аппарат Хаябуса, запущенный к астероиду в мае 2003.

Следующим аппаратом NASA, обладающим маршевыми ионными двигателями, стала (после ряда замораживаний и возобновления работ) АМС Dawn, которая стартовала 27 сентября 2007 года. Dawn предназначается для изучения Весты и Цереры, и несет три двигателя NSTAR, успешно испытанных на Deep Space 1.
Европейское Космическое Агентство установило ионный двигатель на борту спутника GOCE, запущенного 17 марта 2009 года на сверх-низкую околоземную орбиту высотой всего около 260 км. Ионный двигатель создаёт в постоянном режиме импульс, компенсирующий атмосферное трение и другие негравитационные воздействия на спутник.

Перспективы

ЕКА планирует использовать ионный двигатель в меркурианской миссии BepiColombo. Он будет базироваться на двигателе, основанном на Смарт-1, но станет более мощным (запуск намечен на 2011-2012).
NASA ведёт проект «Прометей», для которого разрабатывается мощный ионный двигатель, питающийся электричеством от бортового ядерного реактора. Предполагается, что такие двигатели в количестве восьми штук смогут разогнать аппарат до 90 км/с. Первый аппарат этого проекта Jupiter Icy Moons Explorer планировалось отправить к Юпитеру в 2017 году, однако разработка этого аппарата была приостановлена в 2005 году из-за технических сложностей. В настоящее время идёт поиск более простого проекта АМС для первого испытания по программе «Прометей».

Статья в Компьютерре
Об использовании ядерных реакторов для ионных двигателей (Мембрана.ру)
BepiColombo на сайте ЕКА
Проект «Прометей» на сайте НАСА
АМС Dawn с ионным двигателем стартовала 25 сентября 2007 г.

Фотонный и ионный двигатели

От фантастики к реальности

ФОТОННЫЙ ДВИГАТЕЛЬ - реактивный двигатель, тяга которого создается за счет истечения квантов электромагнитного излучения или фотонов. Главным преимуществом такого двигателя является максимально-возможная в рамках релятивистской механики скорость истечения, равная скорости света в вакууме. Для ракетного аппарата это единственный широко известный способ достичь сколь-нибудь значительной доли световой скорости при разумных значениях числа Циолковского, характеризующего соотношение масс заправленной и пустой ракеты. Необходимо отметить, однако, что и в этом случае речь идет о числе Z порядка нескольких десятков - сотен, при технически реализованных значениях порядка 10 для многоступенчатых ракет. Главным недостатком фотонного двигателя является низкий КПД цепочки преобразования энергии от первичного источника до струи фотонов. Применение реакции аннигиляции для прямого получения оптических и гамма-квантов не намного снижает остроту проблемы, так как необходимо учитывать потери на хранение антивещества (не говоря о его производстве) и трудности фокусировки получаемого излучения. Кроме того, как более реальные, рассматривались использование в качестве источника фотонов термоядерной плазмы (в том числе и для генерации лазерного излучения) и использование электромагнитных квантов более длинноволнового диапазона («радиодвигатель»). В первом случае остаются пока нерешенными проблемы генерации и подержания в устойчивом состоянии плазмы с необходимыми параметрами. «Радиодвигатель» значительно упрощает задачу фокусировки «реактивной струи», но резко снижает КПД движительного комплекса.

Фотонный двигатель: космический прорыв

Эффект эмиссии пыли под воздействием светового излучения позволит создать интересный и перспективный вид космических движителей для полетов к другим планетам Солнечной системы. Под воздействием света и тепла частицы пыли бросают вызов гравитации и устремляются вверх. Данный эффект, сыгравший не последнюю роль в формировании планет и астероидов, может найти также практическое применение в устройствах для удаления пыли, а также в двигателях марсианских зондов и в создании космического паруса нового типа.
При воздействии на слой пыли красным лазерным излучением наблюдается фонтанирующий выброс частиц, напоминающий извержение крошечного вулкана. Всесторонне изучив это явление, ученые Герхард Вурм (Gerhard Wurm) и Оливер Краус (Oliver Krauss) из университета Мюнстера пришли к выводу, что его возникновение связано с фотофорезом и "парниковым эффектом" в твердом теле, сообщает PhysOrg.
Фотофорез - или движение частиц под воздействием света - базируется на давно известном эффекте, называемом термофорезом, то есть движении частиц под воздействием тепла. В средах с температурными градиентами частицы будут перемещаться из более горячей области в менее горячую. Когда источником тепла служит энергия поглощенного света, такой процесс называется фотофорезом.

Фотонный двигатель - двигатель, тяга которого созда-ется за счет истечения квантов э/магнитного излу-чения или фотонов. Выброс частиц порошка графита (на вставке - "извержение" частиц стеклоуглерода).
Фотонный двигатель - это реальность?

В дополнение к поверхностному температурному градиенту "парниковый эффект" твердого тела также играет роль в извержениях пыли. Парниковый эффект возникает вследствие того, что лазерный луч сильнее всего нагревает частицы пыли, находящиеся немного глубже, чем поверхностные слои (по крайней мере на глубине 100 мкм, что составляет несколько десятков слоев частиц).
Ученые вычислили, что для освобождения одной сферической частицы размером в 1 мкм требуется сила приблизительно равная 10-7 Н. "Мы заметили, что частицы поднимаются в среднем на высоту 5 см, - сообщает д-р Вурм. - Высоту можно увеличить до 10 см, но и это еще не предел. Предел, вероятно, зависит от распределения и размеров частиц, силы их взаимного сцепления и мощности лазерного луча".
При мощности 50 мВт излучение проникает в слой пыли на глубину до нескольких миллиметров. Температура имеет тенденцию уменьшаться с увеличением глубины, но фактически она достигает максимума не у поверхности, а на глубине 100 мкм. Таким образом, создается обратный температурный градиент около поверхности, который и вызывает извержение частиц пыли. В ходе экспериментов было также обнаружено, что в течение нескольких десятков секунд после выключения лазера точка максимального градиента температур смешается глубже за счет быстрого остывания поверхности, что еще больше увеличивает силу фотофореза.
Фотофорез лучше всего наблюдать при низком давлении. Эксперименты проводились при давлении 10 миллибар, что составляет примерно 0,01 нормального атмосферного давления Земли, поэтому действие фотофореза на земную пыль незначительно. Однако на ранних стадиях образования планет и звезд фотофорез при малых давлениях, вероятно, играл значительную роль в возникновении газопылевых дисков, которые в свою очередь привели к формированию астероидов и прочих космических объектов пояса Койпера.
Ученые считают, что в будущем фотофорез может найти практическое применение в условиях разреженной атмосферы Марса. Например, можно использовать данную технологию на автоматических исследовательских станциях для удаления пыли с блоков солнечных элементов и линз оптических приборов. Кроме того, ученые планируют создать солнечный парус, который использовал бы силу фотофореза вместо лучевого давления. Такой парус, напоминающий рыболовную сеть и работающий на основе отрицательного фотофореза, по оценкам физиков, может приводить в движение небольшие зонды. Парус размером 10x10 м способен нести полезный груз массой в несколько десятков килограммов только за счет "пассивного" излучения Солнца.

Ионный двигатель: космический прорыв

ИОННЫЙ ДВИГАТЕЛЬ - в субботу 30.09.2003 с космодрома Куру ракетой-носителем «Ариан 5» была успешно выведена в космическое пространство исследовательская станция европейского космического агентства SMART 1. Спутник создан по заказу ESA (European Space Agency, Европейское космическое агентство) Шведской космической корпорацией при участии почти 30 субподрядчиков из 11 европейских стран и США. Общая стоимость проекта составила 110 млн. евро.
SMART 1 - первая автоматическая станция ESA для исследования Луны. В то же время, это уникальная исследовательская станция нового типа, первая в новой программе ESA под названием Small Missions for Advanced Research in Technology. В ходе выполнения программы запланирована апробация целого ряда новых технологий, например, связь в Ка-диапазоне и лазерная связь, автономная навигация и многое другое.
При достаточно большом количестве аппаратуры, SMART 1 отличается малым весом (370 кг, в том числе научная аппаратура - 19 кг) и компактностью. Со сложенными солнечными батареями он представляет собой прямоугольник размером в метр. Стоимость SMART 1 примерно раз в пять меньше, чем типичной межпланетной станции ESA. Но самая главная особенность нового космического аппарата в том, что впервые в истории космонавтики ионный двигатель будет использован в качестве основного. В планах ESA - еще два аппарата, оснащенных ионной двигательной установкой. Это BepiColombo для исследования Меркурия и Solar Orbiter - для изучения Солнца.
Установленный на SMART 1 ионный двигатель потребляет 1350 Ватт электроэнергии, вырабатываемой солнечными батареями, и развивает тягу в 0,07 Ньютон, что примерно соответствует весу почтовой открытки. Рабочим веществом служит ксенон (запас топлива 82 кг). При этом для выхода на эллиптическую полярную орбиту вокруг Луны станции потребовалось 16 месяцев. Выведение SMART 1 на расчетную орбиту представло собой сложный многоступенчатый процесс, состоящий из этапов.

Строго говоря, ионные двигатели уже устанавливались на космических аппаратах - в последние годы, в частности, на исследовательской станции НАСА Deep Space 1 (DS 1) и на экспериментальном геостационарном спутнике связи ESA Artemis. В последнем случае, благодаря наличию на борту ионных двигателей, удалось спасти казавшийся окончательно утраченным спутник ценой в миллионы долларов.
Нештатная работа верхней ступени ракеты-носителя Ariane 5, выводившей на орбиту спутник Artemis, привела к тому, что орбита Artemis оказалась значительно ниже расчетной. Обычно это приводит к потере спутника. Если он несет в себе угрозу другим космическим аппаратам, его топят (тяжелые аппараты) или «сжигают» в атмосфере. Но Artemis избежал этой печальной участи.
Благодаря экстренно принятым мерам и ценой расходования практически всего запаса химического топлива, имевшегося на борту, спутник удалось перевести на круговую орбиту высотой 31 тыс. км. Но после этого надо было перевести Artemis на расчетную геостационарную (высотой около 36 тыс. км). Тогда и было принято решение воспользоваться четырьмя ионными двигателями, установленными на борту попарно. Они изначально предназначались для управления ориентацией (наклоном) спутника. Что бы осуществить переход вектор тяги двигателей был направлен перпендикулярно плоскости орбиты. Но для спасения аппарата ему необходимо было придать импульс в плоскости орбиты, и таким образом перевести на более высокую геостационарную орбиту. Artemis требовалось повернуть на 90 градусов по отношению к его нормальной ориентации.
Сложнейшая спасательная операция, потребовала выработки «на ходу» новой стратегии действий, новых режимов управления спутником и функционирования бортовой аппаратуры. Потребовалось модифицировать 20% всего бортового программного обеспечения. И все же операция прошла весьма успешно. О ее сложности свидетельствует тот факт, что только для перепрограммирования бортовой системы управления потребовалось подгрузить с Земли модифицированные блоки программного обеспечения общим объемом в 15 тыс. слов. Это была самая масштабная операция по перепрограммированию с Земли телекоммуникационного спутника.
Несмотря на скромную тягу (всего 15 миллиньютон) Artemis стал «карабкаться» на расчетную орбиту, поднимаясь на 15 км в день. Вся спасательная операция заняла 18 месяцев. 31 января 2003 года Artemis оказался именно там, где ему следовало бы оказаться еще полтора года назад. Первая в мире спасательная операция, исход которой целиком зависел от надежности ионных двигателей и слаженных действий людей на Земле, прошла успешно. Спутник, считавшийся безнадежно потерянным, приступил к нормальной работе.

По своей конструкции основной двигатель SMART 1 существенно отличается от двигателей, установленных на DS 1 и на Artemis. В случае с последними двумя аппаратами, для ускорения ионов использовалась решетка с поданным на нее потенциалом (так называемый gridded ion engine). В отличие от них SMART 1 оснащен ионным двигателем Холла, который существенно отличается по своей конструкции. Важным преимуществом двигателей на эффекте Холла является отсутствие решетки, подвергающейся постоянной бомбардировке высокоэнергетичными ионами, вследствие чего происходит ее быстрая деградация. Что касается других характеристик ионных двигателей различной конструкции, то ситуация выглядит не столь очевидной. В общем, двигатели с решеткой позволяют получать больший удельный импульс и расходуют примерно в два раза меньше топлива (рабочего тела), чем двигатели Холла. Однако при этом двигатели Холла позволяют развить большую удельную тягу при одинаковом потреблении электроэнергии. Обе конструкции имеют свои достоинства и недостатки, и выбор предпочтительного варианта зависит в каждом случае от характера задач, стоящих перед аппаратом, и от его энергетических возможностей.

Современные ракетные двигатели неплохо справляются с задачей выведения техники на орбиту, но совершенно непригодны для длительных космических путешествий. Поэтому уже не первый десяток лет ученые работают над созданием альтернативных космических двигателей, которые могли бы разгонять корабли до рекордных скоростей. Давайте рассмотрим семь основных идей из этой области.

EmDrive

Чтобы двигаться, надо от чего-то оттолкнуться – это правило считается одним из незыблемых столпов физики и космонавтики. От чего конкретно отталкиваться – от земли, воды, воздуха или реактивной струи газа, как в случае ракетных двигателей, – не так важно.

Хорошо известен мысленный эксперимент: представьте, что космонавт вышел в открытый космос, но трос, связывающий его с кораблем, неожиданно порвался и человек начинает медленно улетать прочь. Все, что у него есть, – это ящик с инструментами. Каковы его действия? Правильный ответ: ему нужно кидать инструменты в сторону от корабля. Согласно закону сохранения импульса, человека отбросит от инструмента ровно с той же силой, с какой и инструмент от человека, поэтому он постепенно будет перемещаться по направлению к кораблю. Это и есть реактивная тяга – единственный возможный способ двигаться в пустом космическом пространстве. Правда, EmDrive, как показывают эксперименты, имеет некоторые шансы это незыблемое утверждение опровергнуть.

Создатель этого двигателя – британский инженер Роджер Шаер, основавший собственную компанию Satellite Propulsion Research в 2001 году. Конструкция EmDrive весьма экстравагантна и представляет собой по форме металлическое ведро, запаянное с обоих концов. Внутри этого ведра расположен магнетрон, излучающий электромагнитные волны, – такой же, как в обычной микроволновке. И его оказывается достаточно, чтобы создавать очень маленькую, но вполне заметную тягу.

Сам автор объясняет работу своего двигателя через разность давления электромагнитного излучения в разных концах "ведра" – в узком конце оно меньше, чем в широком. Благодаря этому создается тяга, направленная в сторону узкого конца. Возможность такой работы двигателя не раз оспаривалась, но во всех экспериментах установка Шаера показывает наличие тяги в предполагаемом направлении.

В числе экспериментаторов, опробовавших "ведро" Шаера, такие организации, как NASA, Технический университет Дрездена и Китайская академия наук. Изобретение проверяли в самых разных условиях, в том числе и в вакууме, где оно показало наличие тяги в 20 микроньютонов.

Это очень мало относительно химических реактивных двигателей. Но, учитывая то, что двигатель Шаера может работать сколь угодно долго, так как не нуждается в запасе топлива (работу магнетрона могут обеспечивать солнечные батареи), потенциально он способен разгонять космические корабли до огромных скоростей, измеряемых в процентах от скорости света.

Чтобы полностью доказать работоспособность двигателя, необходимо провести еще множество измерений и избавиться от побочных эффектов, которые могут порождаться, к примеру, внешними магнитными полями. Однако уже выдвигаются и альтернативные возможные объяснения аномальной тяги двигателя Шаера, которая, в общем-то, нарушает привычные законы физики.

К примеру, выдвигаются версии, что двигатель может создавать тягу благодаря взаимодействию с физическим вакуумом, который на квантовом уровне имеет ненулевую энергию и заполнен постоянно рождающимися и исчезающими виртуальными элементарными частицами. Кто в итоге окажется прав – авторы этой теории, сам Шаер или другие скептики, мы узнаем в ближайшем будущем.

Солнечный парус

Как говорилось выше, электромагнитное излучение оказывает давление. Это значит, что теоретически его можно преобразовывать в движение – например, с помощью паруса. Аналогично тому, как корабли прошлых веков ловили в свои паруса ветер, космический корабль будущего ловил бы в свои паруса солнечный или любой другой звездный свет.

Проблема, однако, в том, что давление света крайне мало и уменьшается с увеличением расстояния от источника. Поэтому, чтобы быть эффективным, такой парус должен иметь очень малый вес и очень большую площадь. А это увеличивает риск разрушения всей конструкции при встрече с астероидом или другим объектом.

Попытки строительства и запуска солнечных парусников в космос уже имели место – в 1993 году тестирование солнечного паруса на корабле "Прогресс" провела Россия, а в 2010 году успешные испытания по пути к Венере осуществила Япония. Но еще ни один корабль не использовал парус в качестве основного источника ускорения. Несколько перспективнее в этом отношении выглядит другой проект – электрический парус.

Электрический парус

Солнце излучает не только фотоны, но также и электрически заряженные частицы вещества: электроны, протоны и ионы. Все они формируют так называемый солнечный ветер, ежесекундно уносящий с поверхности светила около одного миллиона тонн вещества.

Солнечный ветер распространяется на миллиарды километров и ответственен за некоторые природные явления на нашей планете: геомагнитные бури и северное сияние. Земля от солнечного ветра защищается с помощью собственного магнитного поля.

Солнечный ветер, как и ветер воздушный, вполне пригоден для путешествий, надо лишь заставить его дуть в паруса. Проект электрического паруса, созданный в 2006 году финским ученым Пеккой Янхуненом, внешне имеет мало общего с солнечным. Этот двигатель состоит из нескольких длинных тонких тросов, похожих на спицы колеса без обода.

Благодаря электронной пушке, излучающей против направления движения, эти тросы приобретают положительный заряженный потенциал. Так как масса электрона примерно в 1800 раз меньше, чем масса протона, то создаваемая электронами тяга не будет играть принципиальной роли. Не важны для такого паруса и электроны солнечного ветра. А вот положительно заряженные частицы – протоны и альфа-излучение – будут отталкиваться от тросов, создавая тем самым реактивную тягу.

Хотя эта тяга будет примерно в 200 раз меньше, чем таковая у солнечного паруса, заинтересовал Европейское космическое агентство. Дело в том, что электрический парус гораздо проще сконструировать, произвести, развернуть и эксплуатировать в космосе. Кроме того, с помощью гравитации парус позволяет также путешествовать к источнику звездного ветра, а не только от него. А так как площадь поверхности такого паруса гораздо меньше, чем у солнечного, то для астероидов и космического мусора он уязвим куда меньше. Возможно, первые экспериментальные корабли на электрическом парусе мы увидим уже в следующие несколько лет.

Ионный двигатель

Поток заряженных частиц вещества, то есть ионов, излучают не только звезды. Ионизированный газ можно создать и искусственно. В обычном состоянии частицы газа электрически нейтральны, но, когда его атомы или молекулы теряют электроны, они превращаются в ионы. В общей своей массе такой газ все еще не имеет электрического заряда, но его отдельные частицы становятся заряженными, а значит, могут двигаться в магнитном поле.

В ионном двигателе инертный газ (обычно используется ксенон) ионизируется с помощью потока высокоэнергетических электронов. Они выбивают электроны из атомов, и те приобретают положительный заряд. Далее получившиеся ионы ускоряются в электростатическом поле до скоростей порядка 200 км/с, что в 50 раз больше, чем скорость истекания газа из химических реактивных двигателей. Тем не менее современные ионные двигатели обладают очень маленькой тягой – около 50–100 миллиньютонов. Такой двигатель не смог бы даже сдвинуться со стола. Но у него есть серьезный плюс.

Большой удельный импульс позволяет значительно сократить расходы топлива в двигателе. Для ионизации газа используется энергия, полученная от солнечных батарей, поэтому ионный двигатель способен работать очень долго – до трех лет без перерыва. За такой срок он успеет разогнать космический аппарат до скоростей, которые химическим двигателям и не снились.

Ионные двигатели уже не раз бороздили просторы Солнечной системы в составе различных миссий, но обычно в качестве вспомогательных, а не основных. Сегодня как о возможной альтернативе ионным двигателям все чаще говорят про двигатели плазменные.

Плазменный двигатель

Если степень ионизации атомов становится высокой (порядка 99%), то такое агрегатное состояние вещества называется плазмой. Достичь состояния плазмы можно лишь при высоких температурах, поэтому в плазменных двигателях ионизированный газ разогревается до нескольких миллионов градусов. Разогрев осуществляется с помощью внешнего источника энергии – солнечных батарей или, что более реально, небольшого ядерного реактора.

Горячая плазма затем выбрасывается через сопло ракеты, создавая тягу в десятки раз большую, чем в ионном двигателе. Одним из примеров плазменного двигателя является проект VASIMR, который развивается еще с 70-х годов прошлого века. В отличие от ионных двигателей, плазменные в космосе еще испытаны не были, но с ними связывают большие надежды. Именно плазменный двигатель VASIMR является одним из основных кандидатов для пилотируемых полетов на Марс.

Термоядерный двигатель

Укротить энергию термоядерного синтеза люди пытаются с середины ХХ века, но пока что сделать это так и не удалось. Тем не менее управляемый термоядерный синтез все равно очень привлекателен, ведь это источник громадной энергии, получаемой из весьма дешевого топлива – изотопов гелия и водорода.

В настоящий момент существует несколько проектов конструкции реактивного двигателя на энергии термоядерного синтеза. Самой перспективной из них считается модель на основе реактора с магнитным удержанием плазмы. Термоядерный реактор в таком двигателе будет представлять собой негерметичную цилиндрическую камеру размером 100–300 метров в длину и 1–3 метра в диаметре. В камеру должно подаваться топливо в виде высокотемпературной плазмы, которая при достаточном давлении вступает в реакцию ядерного синтеза. Располагающиеся вокруг камеры катушки магнитной системы должны удерживать эту плазму от контакта с оборудованием.

Зона термоядерной реакции располагается вдоль оси такого цилиндра. С помощью магнитных полей экстремально горячая плазма проистекает через сопло реактора, создавая огромную тягу, во много раз большую, чем у химических двигателей.

Двигатель на антиматерии

Все окружающее нас вещество состоит из фермионов – элементарных частиц с полуцелым спином. Это, к примеру, кварки, из которых состоят протоны и нейтроны в атомных ядрах, а также электроны. При этом у каждого фермиона есть своя античастица. Для электрона таковой выступает позитрон, для кварка – антикварк.

Античастицы имеют ту же массу и тот же спин, что и их обычные "товарищи", отличаясь знаком всех остальных квантовых параметров. Теоретически античастицы способны составлять антивещество, но до сих пор нигде во Вселенной антивещество зарегистрировано не было. Для фундаментальной науки является большим вопросом, почему его нет.

Но в лабораторных условиях можно получить некоторое количество антивещества. К примеру, недавно был проведен эксперимент по сравнению свойств протонов и антипротонов, которые хранились в магнитной ловушке.

При встрече антивещества и обычного вещества происходит процесс взаимной аннигиляции, сопровождаемый выплеском колоссальной энергии. Так, если взять по килограмму вещества и антивещества, то количество выделенной при их встрече энергии будет сопоставимо со взрывом "Царь-бомбы" – самой мощной водородной бомбы в истории человечества.

Причем значительная часть энергии при этом выделится в виде фотонов электромагнитного излучения. Соответственно, возникает желание использовать эту энергию для космических перемещений путем создания фотонного двигателя, похожего на солнечный парус, только в данном случае свет будет генерироваться внутренним источником.

Но чтобы эффективно использовать излучение в реактивном двигателе, необходимо решить задачу создания "зеркала", которое было бы способно эти фотоны отразить. Ведь кораблю каким-то образом надо оттолкнуться, чтобы создать тягу.

Никакой современный материал попросту не выдержит рожденного в случае подобного взрыва излучения и моментально испарится. В своих фантастических романах братья Стругацкие решили эту проблему путем создания "абсолютного отражателя". В реальной жизни ничего подобного пока сделать не удалось. Эта задача, как и вопросы создания большого количества антивещества и его длительного хранения, – дело физики будущего.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «strizhmoscow.ru» — Все об устройство автомобиля. Информационный портал