В мфти создают «локальный» вечный двигатель второго рода. Почему невозможно создать вечный двигатель

Давно установлено, что изобретение вечного двигателя невозможно. В широком смысле, под вечным двигателем подразумевают механизм, безостановочно движущий сам себя. Но это далеко не достаточное определение. Благодаря многовековым бесплодным попыткам создания чудо-машины сегодня можно определить точно само понятие «вечного двигателя» и причины его неосуществимости. Более того, такие попытки оставили значительный след в истории и подтвердили существование важнейших законов физики. Каких, рассмотрим и проанализируем ниже.

Определение и классификация вечных двигателей

Итак, вечный двигатель, как уже известно - устройство воображаемое. По характеру совершаемой работы можно классифицировать следующим образом:

  1. Вечный двигатель первого рода (физический \ механический, гидравлический, магнитный) - непрерывно действующая машина, которая, будучи запущенной один раз, совершает работу без получения энергии извне. Это устройства механического характера, принцип действия которых основывается на использовании некоторых физических явлений, например, на действии силы тяжести, законе Архимеда, капиллярных явлениях в жидкостях.
  2. Вечный двигатель второго рода (естественный) - тепловая машина, которая в результате совершения цикла полностью преобразует тепло, получаемое от какого- либо одного «неисчерпаемого» источника (океана, атмосферы и т. п.), в работу. Связываются с циклически повторяющимися природными явлениями или с принципами небесной механики.

Такая классификация является распространенной и встречается в старой научной литературе. У более поздних исследователей существует еще одно определение. Оно исходит из представления об идеальной машине, работающей без потерь и превращающей всю сообщенную энергию в полезную работу или в какой-либо другой вид энергии.

К этим определениям ученые разных времен шли долгим путем. Они подвергали их обстоятельному анализу и были единодушны далеко не всегда. Проблема заключалась в том, можно ли считать вечным двигателем только ту машину, которая, будучи собрана полностью, немедленно начнет работать сама по тебе, или допустимо сообщить устройству начальный двигательный импульс. Спор велся и о том, относится ли к основным признакам вечного двигателя условие, чтобы он, будучи приведен в движение, одновременно совершал некоторую полезную работу.

Причины возникновения идеи создания

Первое упоминание о вечном двигателе относится к 1150 г. Но означает ли это, что античные механики не интересовались вечным движением? Наоборот, это являлось одной из тех традиционных проблем, которым в связи с исследованием физических явлений наука уделяла много внимания. Но при исследовании условий, определяющих круговое движение тел, греки пришли к выводам, теоретически исключающим всякую возможность существования на Земле искусственно созданного вечного движения. Например, Аристотель утверждал, что движение тел ускоряется по направлению к ее центру. О телах с действительно круговым движением он пишет: «Они не могут быть ни тяжелыми, ни легкими, так как не способны приближаться к центру или удаляться от него естественным или вынужденным образом». Такому условию удовлетворяют только небесные тела.

Но родоначальником идеи вечного двигателя считают индийского поэта, математика и астронома Бхаскара Ачарью (1114-1185), описавшего в своем стихотворении некое вечно двигающееся колесо. Заметим, что за основу взято тело круглой формы. Согласно древнеиндийской философии, регулярно повторяющиеся события, составляющие круговой цикл, являются для него символом вечности и совершенства. То есть прародители идеи вечного движения были мотивированы не практическими, а религиозными потребностями. Своего апогея идея вечного двигателя достигает в средние века в Европе, в период интенсивного строительства храмов, кафедральных соборов и княжеских дворцов, и тогда уже создателей, конечно, интересует практическое применение машины.

Некоторые модели вечных двигателей первого рода

Колесо с неуравновешенными грузами

Рисунок 1

Рисунок 2

Рисунок 3

Вот модель вечного двигателя Бхаскары (Рис. №1) с прикрепленными наискось по внутренней стороне окружности длинными узкими сосудами, наполовину заполненными ртутью. Бхаскара обосновывает вращение колеса следующим образом: «Наполненное так жидкостью колесо, будучи насажено на ось, лежащую на двух неподвижных опорах, непрерывно вращается само по себе».

Еще две модели, аналогичные по принципу действия, изобретенные в средневековой Европе. Роль сосудов, частично наполненных ртутью, играют выпукло­вогнутые секторы внутри колеса, внутри которых находятся тяжелые шары (Рис. №2) или подвижно закрепленные на внешней части колеса стержни с грузами на концах (Рис. №3).

Принцип действия данных двигателей заключается в создании постоянного неравновесия сил тяжести на колесе, вследствие которого колесо должно вращаться. Рассмотрим, почему этот расчет не оправдывается на примере обычного колеса. Здесь предполагается, что работу совершает сила тяжести, то есть в нормальных условиях (при небольших расстояниях и вблизи поверхности Земли) она постоянна и направлена всегда в одну и ту же сторону.

Рисунок 4

F T - вес груза, F P - сила, с которой рычаг воздействует на шарнир (компенсируется силой реакции опоры), F B - поворачивающая сила, R - расстояние от шарнира (оси поворота) до траектории центра масс груза.

Когда рычаг стоит строго вертикально вверх, вес груза передается на шарнир и компенсируется реакцией опоры. Сила направлена по нормали к окружности, тангенциальная составляющая

отсутствует, значит, момент сил равен нулю. Это положение называется верхней мёртвой точкой (ВМТ). Если рычаг отклоняется, реакция опоры уже не компенсирует вес, появляется тангенциальная составляющая силы, а нормальная начинает уменьшаться. Так будет продолжаться только до тех пор, пока рычаг не примет горизонтальное положение. Когда момент сил достигнет максимального значения, рычаг снова начнет действовать на груз, нормальная сила поменяет свой знак относительно рычага. Тангенциальная сила начнёт уменьшаться, до момента, когда рычаг не окажется в положении вертикально вниз (нижняя мёртвая точка (НМТ)).

Таким образом, как видно из Рис. №4, половину рабочего цикла груз ускоряется, двигаясь из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ), и половину - замедляется. Сделав несколько оборотов, колесо с неуравновешенными грузами достигнет состояния равновесия.

Цепь на наклонной плоскости

Рисунок 5

Еще один тип механических вечных двигателей - тяжелая цепь, переброшенная более длинной стороной через систему блоков. Теоретически предполагалось, что часть, на которой находится большее количество звеньев, начнет соскальзывать с наклонной плоскости, вследствие чего замкнутая цепь будет беспрерывно двигаться. Однако известно, что цепь будет покоиться. Этот тип двигателей интересен в первую очередь тем, что из невозможности его вечного движения инженер, механик и математик Симон Стевин (1548-1620) доказал закон равновесия тела на наклонной плоскости. Одна цепь тяжелее другой во столько же раз, во сколько раз большая грань (АВ на Рис.№5) призмы длиннее короткой (ВС на Рис.№5). Отсюда следует, что два связанных груза уравновешивают друг друга на наклонных плоскостях, если их массы пропорциональны длинам этих плоскостей.

Похожий по принципу механизм (Рис. №6): тяжелая цепь перекинута через колеса так, что правая ее половина всегда длиннее левой. Следовательно, она должна падать вниз, приводя цепь во вращение. Но цепь в левой части натянута отвесно, а правая - под некоторым углом и изогнуто. Аналогично вечное движение и этого механизма невозможно.

Рисунок 6

Гидравлический вечный двигатель с винтом Архимеда

В подавляющем большинстве вечных гидравлических двигателей изобретатели пытались использовать известный со времен Древней Греции механизм - винт Архимеда - полую трубку со спиралевидной плоскостью внутри, предназначенную для подъема воды из сосуда в сосуд наибольшей высоты.

Рисунок 7

Жидкость из сосуда, поднимается фитилями сначала в верхний сосуд, оттуда другими фитилями еще выше, верхний сосуд имеет желоб для стока, которое падает на лопатки колеса, приводя его во вращение. Оказавшаяся в нижнем ярусе жидкость снова поднимается по фитилям до верхнего сосуда. Таким образом, струя, стекающая по желобу на колесо, не прерывается, и колесо вечно должно находиться в движении (Рис. №7).

Только колесо этой машины никогда не станет вращаться, поскольку в верхнем сосуде не окажется воды. Это произойдет потому, что капиллярные силы вызванные искривлением поверхности жидкости, хотя и позволяют преодолеть силу тяжести, поднимая жидкость в ткани фитиля, но они и удерживают ее в порах ткани, не позволяя ей вытечь из них.

Сосуд Денни Папена

Рисунок 8

Проект гидравлического вечного двигателя Денни Папена - сосуд, сужающийся в трубку и загнутый таким образом, что свободный конец трубки с меньшим радиусом расположен в пределах большого «горла» сосуда (Рис. №8). Автор предполагал, что вес воды в более широкой части сосуда будет превосходить вес жидкости, находящейся в трубке, в более узкой части. Таким образом, должна была происходить циркуляция жидкости за счет разности давлений. На самом деле в данном случае работает основной закон гидростатики: давление, оказываемое на жидкость, передается без изменения по всем направлениям. Поверхность жидкости в тонкой трубке установится на том же уровне, что и в сосуде, как в любых сообщающихся сосудах.

Ранее это двигателя были предложены похожие сосуды, иначе ориентированные в пространстве. В них за основу брался принцип действия сифона: в нем (в изогнутой трубке с коленами разной длины, по которой жидкость поступает из сосуда с более высоким в сосуд с более низким уровнем жидкости) работа, затрачиваемая на подъем жидкости, производится атмосферным давлением. В то же время, чтобы жидкость могла протекать через сифон, максимальная высота его изгиба не должна превосходить высоту столба жидкости, уравновешиваемого давлением внешнего воздуха. Для воды эта высота при нормальном барометрическом давлении составляет примерно 10 м. - этот факт не учитывался и приводил к неверным выводам о вечном движении такого двигателя.

Другие гидравлические двигатели

Рисунок 9

Среди множества проектов вечного двигателя было немало основанных на законе Архимеда. Один из таких проектов выглядит следующим образом: высокий сосуд (20 м), наполненный водой, имеет расположенные на одной грани в разных ее концах шкивы, через которые перекинут прочный бесконечный канат с четырнадцатью закрепленными полыми ящиками кубической формы. Ящики одинаковы, равноудалены, водонепроницаемы и имеют стороны в 1 м (Рис. №9).

Действительно, ящики, находящиеся в воде, будут стремиться всплыть вверх. На них действует сила, равная весу воды, вытесняемой ящиками.

Но даже при условии, что данный канат бесконечен, эффект не оправдывается, потому что чтобы канат вращался, ящики должны входить в сосуд именно со дна, а для этого они должны преодолеть давление столба воды, которое окажется значительно больше силы Архимеда.

Рисунок 10

Упрощенный вариант вечного двигателя гидравлического типа (Рис.№10), идея которого исходит из грубого нарушения толкования закона Архимеда. Погруженная в воду часть деревянного барабана, согласно закону Архимеда, подвергается действию выталкивающей силы. Конечно, колесо вращаться не будет, потому что сила будет направлена не вверх (как предполагалось изобретателем), а к центру колеса.

Магнитный вечный двигатель

Рисунок 11

Несложная, но оригинальная модель вечного двигателя с магнитами. К шаровому магниту, расположенному на стойке, ведут два наклонных желоба: один прямой, установленный выше, другой изогнутый (Рис. №11). Железный шарик, помещенный на верхний желоб, будет притягиваться магнитом, затем на пути он попадет в отверстие, скатится по нижнему желобу и снова перейдет на верхний желоб.

Однако, если магнит достаточно силен, чтобы притянуть шарик от нижней точки, то он не даст ему провалиться через отверстие, расположенное совсем рядом. Если же, наоборот, сила притяжения будет недостаточна, то шарик не притянется вовсе.

Вечный двигатель первого рода в противоречии с законом сохранения энергии

Окончательное утверждение закона сохранения энергии в 40-70 годы XIX века произошло на основе работ Сади Карно, Роберта Майера, Джеймса Джоуля и Германа Гельмгольца, которые показали связь между различными формами энергии (механической, тепловой, электрической и др.). Закон сохранения энергии формулируется в следующем виде: в изолированной системе энергия может переходить из одной формы в другую, но общее количество ее остается постоянным.

Как правило, невозможность вечного двигателя рассматривают как следствие закона сохранения энергии. Рассуждения Майера и опыты Джоуля доказали эквивалентность механической работы и теплоты, показав, что количество выделяемой теплоты равно совершенной работе и наоборот, формулировку же в точных терминах закону сохранению энергии первым дал Гельмгольц. В отличие от своих предшественников, он связывал закон сохранения энергии с невозможностью существования вечных двигателей. Принцип невозможности вечного двигателя был положен Майером и Гельмгольцем в основу анализа различных превращений энергии. Макс Планк в работе «Принцип сохранения энергии» сделал специальный акцент на эквивалентности (а не причинно-следственной связи) принципа невозможности вечного двигателя и принципа сохранения энергии.

В термодинамике исторически закон сохранения формулируется в виде первого начала термодинамики: изменение внутренней энергии термодинамической системы при переходе ее из одного состояния в другое равно сумме работы внешних сил над системой и количества теплоты, переданного системе, и не зависит от способа, которым осуществляется этот переход, т. е. Q = ΔU + A. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

Вечные двигатели второго рода

Классический вечный двигатель второго рода предусматривает возможность накопления тепла за счет работы, затраты которой меньше полученного тепла, и использования части этого тепла для повторного совершения работы в новом цикле. Таким образом, должен образоваться избыток работы. Другой вариант этого двигателя подразумевает упорядочение хаотического теплового движения молекул, в результате чего возникает направленное движение вещества, сопровождаемое понижением его термодинамической температуры. Широко известных проектов таких двигателей изобретено не так много, как, например, двигателей первого рода, и информация о них не достаточна для описания. Подавляющее большинство идей таких машин являются абсурдными и противоречивыми, либо относятся к классу мнимых вечных двигателей (по сути, не являются вечными), обладают низким КПД.

Сформулированное Рудольфом Клаузиусом второе начало термодинамики однозначно утверждает: невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему. Что также означает, что в замкнутой системе энтропия при любом реальном процессе либо возрастает, либо остается неизменной (т. е. ΔS ≥ 0). Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Возможность использования энергии теплового движения частиц тела (теплового резервуара) для получения механической работы (без изменения состояния других тел) означала бы возможность реализации вечного двигателя второго рода, работа которого не противоречила бы закону сохранения энергии. Например, работа двигателя корабля за счет охлаждения воды океана (доступного и практически неисчерпаемого резервуара внутренней энергии) не противоречит закону сохранения энергии, но если, кроме охлаждения воды, нигде других изменений нет, то работа такого двигателя противоречит второму началу термодинамики. В реальном тепловом двигателе процесс превращения теплоты в работу сопряжен с передачей определенного количества теплоты внешней среде. В результате тепловой резервуар двигателя охлаждается, а более холодная внешняя среда нагревается, что находится в согласии со вторым началом термодинамики.

Мнимый вечный двигатель

Рисунок 12

В 60-х гг. XX в. мировую сенсацию произвела игрушка, получившая в СССР название «вечно пьющая птичка» или «птичка Хоттабыча». Тонкая стеклянная колба с горизонтальной осью посередине впаяна в небольшую емкость. Свободным концом колбочка почти касается ее дна. В колбе находится определенное количество эфира (в нижней части), верхняя пустая часть колбы обклеена снаружи тонким слоем ваты. Перед игрушкой ставят сосуд с водой и наклоняют ее, заставляя «попить» (Рис.№12). Затем механизм работает самостоятельно: несколько раз в минуту наклоняется к сосуду с водой, пока вода не кончится.

Механизм такого явления понятен: жидкость в нижней полости испаряется под влиянием комнатного тепла, давление растет и вытесняет жидкость в трубочку. Верхняя часть конструкции перевешивает, наклоняется, пар перемещается в верхний шарик. Давление выравнивается, жидкость возвращается в нижний объем, который перевешивает и возвращает «птичку» в первоначальное положение.

На первый взгляд здесь нарушается второе начало термодинамики: перепад температур отсутствует, машина только забирает тепло из воздуха. Но когда колба достигает сосуда с водой, вода из мокрой ваты интенсивно испаряется, охлаждая верхний шарик. Возникает разность температур верхнего и нижнего сосудов, за счёт которой и происходит движение. Если испарение прекратится (высохнет вата или влажность воздуха достигнет точки росы, то есть температуры, до которой должен охладиться воздух, чтобы содержащийся в нем водяной пар достиг состояния насыщения и начал конденсироваться в росу), машина в полном согласии со вторым началом термодинамики перестанет двигаться. Мощность такого двигателя очень низка из-за незначительной разности температур и давлений, при котором «птичка» работает.

Вечные двигатели как коммерческие проекты

Вечные двигатели, с древнейших времен окутанные тайной изобретения и действия, несомненно, создавались не только для использования в практическом плане. Во все времена были мошенники и фантазеры, намеревавшиеся извлечь не только энергию большую, чем 100%.

Одна из самых известных «афер века» - вечный двигатель Иоганна Бесслера (1680-1745).

Рисунок 13

Рисунок 14

Под псевдонимом Орфиреус этот саксонский инженер 17 ноября 1717 года в присутствии известных физиков продемонстрировал машину с диаметром вала больше 3,5 м. Двигатель пустили в ход и заперли в комнате, а проверив через полтора месяца, убедились, что колесо двигателя вращается с прежней скоростью.

Когда то же самое произошло еще через два месяца, слава Бесслера прогремела по всей Европе. Изобретатель соглашался продать машину Петру I , но этого не произошло. Однако это не помешало жить Бесслеру безбедно на средства, полученные путем демонстрации двигателя. Двигатель представляет собой большое колесо, вращающееся и поднимающее при этом тяжелый груз на значительную высоту (Рис. №13).

Изобретение вызвало множество споров и нерешенных вопросов. Самый главный из них - принцип действия - не был известен широкой публике. Поэтому недоверчивые скептики заключили, что секрет заключается в том, что искусно спрятанный человек тянет за веревку, намотанную, незаметно для наблюдателя, на скрытой части оси колеса. И их ожидания оправдались: вскоре служанка Бесслера раскрыла тайну:

двигатель действительно работал только с помощью третьих лиц (Рис. №14).

Еще один известный случай использования вечного двигателя «не по назначению»: в одном из городов с целью привлечения клиентов у одного кафе было установлено «вечно» вращающееся колесо, которое, конечно, запускалось с помощью механизма.

Некоторые разработчики идей вечных двигателей в хронологическом порядке:

  1. Бхаскара Ачарья (1114-1185), поэт, астроном, математик.
  2. Виллар де Оннекур (XIII век), архитектор.
  3. Николай Кузанский (1401-1464), философ, теолог, церковно-политический деятель.
  4. Франческо ди Джорджо (1439-1501), художник, скульптор, архитектор, изобретатель, военный инженер.
  5. Леонардо да Винчи (1452-1519), художник, скульптор, архитектор, математик, физик, анатом, естествоиспытатель.
  6. Джамбаттиста Порта (1538 - 1615), философ, оптик, астролог, математик, метеоролог.
  7. Корнелиус Дреббель (1572 - 1633), физик, изобретатель.
  8. Атанасиус Кирхер (1602-1680), физик, лингвист, теолог, математик.
  9. Джон Уилкинс (1614-1672), философ, лингвист.
  10. Денни Папен (1647-1712), математик, физик, изобретатель.
  11. Иоганн Бесслер (1680-1745), инженер-механик, врач, мошенник.
  12. Дэвид Брюстер (1781-1868), физик.
  13. Вильгельм Фридрих Оствальд (1853-1932), физик, химик, философ-идеалист.
  14. Виктор Шаубергер (1885-1958), изобретатель.

Заключение

В 1775 году Французская Академия приняла решение не рассматривать предложения вечных двигателей, выдвинув окончательный вердикт: построение вечного двигателя абсолютно невозможно. За всю историю вечного двигателя было изобретено более 600 проектов, причем большинство из них пришлось на время, когда стали известны законы термодинамики и сохранения энергии.

Конечно, усилия многочисленных создателей вечных двигателей не пропали даром. Пытаясь сконструировать невозможное, они нашли немало любопытных технических решений, придумали механизмы и устройства, которые до сих пор применяются в машиностроении. В бесплодных поисках вечного движения родились основы инженерной науки и подтвердились законы, отрицающие его существование.

| Механические вечные двигатели. | Мнимые перпетуум мобиле. | Мошенничество с изобретением Орфиреуса | Наиболее ранние сведения о вечных двигателях. | На пути к определению понятий работы и энергии. | Научная фантастика и перпетуум мобиле. | Опыты с магнетизмом. | Первые попытки создания вечных двигателей. | Период наивысшего расцвета идеи perpetuum mobile. | Перпетуум мобиле в эпоху Возрождения. | Разгар дискуссии о вечном двигателе. | Споры вокруг перпетуум мобиле.

Вечный двигатель второго рода.

Как известно, закон сохранения энергии можно сформулировать в следующей несколько видоизмененной форме: при всех процессах преобразования энергии сумма всех видов энергии, участвующих в данном процессе, должна оставаться неизменной . Такая формулировка, хотя и не допускает возможности создания энергии из ничего, однако оставляет открытым другой путь реализации вечного двигателя, принцип работы которого основывался бы на идеальном преобразовании одной формы энергии в другую. Поэтому можно предложить, например, такой рабочий цикл: пусть в паровой машине (турбине, двигателе внутреннего сгорания или каком-либо ином тепловом двигателе) мы затрачиваем некоторое количество теплоты на совершение определенной механической работы; далее, полученную механическую энергию вновь преобразуем в тепло, нагревая с ее помощью пар и приводя им в действие паровую машину (турбину), и т.д. Понятно, что подобный цикл превращения энергии можно повторять бесконечно: ведь энергия данной системы с течением времени не увеличивается и не уменьшается.

Исследованием вопроса о перпетуум мобиле такого типа в начале XX в. подробно занимался известный немецкий физико-химик Вильгельм Оствальд . Описанную выше идеальную машину, способную циклично и без потерь преобразовывать энергию из одной формы в другую, он назвал перпетуум мобиле второго рода. Правда, как явствует из самого названия, даже после отказа от возможности создания перпетуум мобиле первого рода проблема вечного движения все же продолжает оставаться открытой. При этом, однако, оба указанных вида вечных двигателей резко различаются между собой. В то время как функция объявленного учеными неосуществимым перпетуум мобиле первого рода состояла в непрерывном совершении полезной работы без пополнения запасов энергии от внешних источников, назначение вечного двигателя второго рода представлялось совершенно иным - от этой машины требовалась лишь способность идеально трансформировать энергию.

В связи с обсуждением вопроса о вечном двигателе второго рода в центре дискуссии снова оказалось действие закона сохранения энергии. Из курса физики известно, что этот закон в применении к тепловым процессам составляет содержание первого начала термодинамики. Действительно, первое начало утверждает эквивалентность тепловой и механической энергии, однако в нем ничего не говорится о том, в каком направлении должны протекать процессы преобразования энергии. Бросаем ли мы камень со скалы в пропасть, превращаем ли при взрыве накопленный во взрывчатке запас химической энергии в механическую энергию, свет и тепло, сжигаем ли топливо для обогрева наших домов - все это суть закономерные изменения форм энергии. Но в то же самое время закон сохранения энергии не запрещает протекание любого из этих процессов в обратном направлении, что явно противоречит нашему практическому опыту. Таким образом, некритическое применение этого закона приводит нас к абсурдным заключениям.

Приведем еще один пример. Согласно первому началу термодинамики, теплота эквивалентна механической энергии, поэтому, не входя в противоречие с первым началом, вполне можно построить машину, отбирающую тепло от тела, которое имеет температуру окружающего воздуха, или, к примеру, забирающую тепло воды из больших водоемов и совершающую благодаря этому механическую работу. При этом даже небольшое охлаждение воды в водоеме освобождало бы огромное количество тепловой энергии, которую можно было бы преобразовывать в электрическую или, далее, опять в механическую энергию. Так, например, охлаждая на 1°С воду, содержащуюся в пруду площадью 120 м 2 и глубиной 1,9 м, мы получили бы энергию, равную 954 кДж . Если преобразовать теперь полученную механическую энергию обратно в тепло, то тем самым возникает замкнутый цикл преобразования энергии, основанный на принципе перпетуум мобиле второго рода. Вопрос заключается только в том, осуществимы ли на практике машины, реализующие этот идеальный цикл трансформации, поскольку в обыденной жизни мы никогда не встречаемся с подобными явлениями.

Из собственного опыта мы знаем, что в теплом помещении вынутая из холодильника бутылка с молоком нагревается, а стакан горячего чая остывает. К тому же холодная жидкость при своем нагревании незаметно понижает температуру воздуха в комнате, а горячая - повышает. Понятно, что в этих процессах мы не находим ничего удивительного. Вместе с тем никогда не случается, чтобы холодное тело само собой охладилось или горячее - нагрелось. Для такого охлаждения служат специальные холодильные установки, нуждающиеся, однако, в постоянном подводе энергии от внешних источников. В то же время самопроизвольное охлаждение холодного или нагревание горячего тела вовсе не противоречит первому началу термодинамики. Поэтому очевидно, что формулировку этого закона следует как-то уточнить и дополнить.

Задачу об использовании тепла путем охлаждения водных бассейнов нашей планеты приводил еще В. Оствальд в качестве типичного примера, демонстрирующего нереальность идеи вечного двигателя второго рода. В своей книге «Всеобщая химия », изданной в 1893 г., он писал:

«Обычно мы не отдаем себе отчета в том, что теорему о перпетуум мобиле можно истолковывать двояким образом. С одной стороны, - о ней речь заходит чаще - можно было бы построить перпетуум мобиле (имеется в виду вечный двигатель первого рода), с его помощью вырабатывать определенную энергию и использовать ее, например, для привода какой-либо машины. Доказательство невозможности подобного процесса приводит нас к первому основному закону энергетики, который говорит о том, что энергию нельзя создать или уничтожить. Перпетуум мобиле, однако, можно было бы приводить в действие иначе, не вырабатывая энергии, если бы удалось включить в процесс трансформации огромное количество неиспользованной энергии, таящейся в природе. Например, если бы можно было преобразовать большие запасы тепловой энергии, содержащиеся в водах Мирового океана, в механическую энергию, которая со временем опять перешла бы в тепловую энергию, то тем самым мы осуществили бы вечный двигатель второго рода. Такое, конечно, невозможно, потому что эти запасы тепла, внешне проявляющиеся в форме установившейся температуры Земли, неизменны».

Другой немецкий физик Рудольф Клаузиус также много времени посвятил исследованию проблем термодинамики. В частности, он пришел к выводу, что энергия нашего мира остается неизменной. Одновременно с этим он высказал важную теорему о стремлении энтропии замкнутой системы к максимуму. Чтобы лучше понять значение этой теоремы, попытаемся подробнее пояснить смысл понятия энтропии, оставляя в стороне его строгую математическую формулировку. Важнейшим свойством энтропии является то, что она не изменяется в обратимых физических процессах, т.е. в идеальных процессах, которые могут протекать в обоих направлениях без какой бы то ни было потери энергии. Практический опыт показывает, что в реальных физических явлениях всегда присутствуют те или иные факторы, например, пассивные силы (трение), из-за воздействия которых часть преобразуемой энергии, переходя в тепло, для следующей фазы данного цикла трансформации оказывается безвозвратно потерянной. О таких потерях говорят как о «мертвой» энергии, об «обесценивании » энергии или о снижении ее «качества ». В связи с этим тепловой энергии отводят последнее место в ряду различных видов энергии, поскольку при всяком процессе ее преобразования обязательно возникает тепло, которое уже нельзя трансформировать ни в какую более высокую форму энергии.

Рассуждения такого рода, применявшиеся к нашему миру в целом, приводили к созданию представлений о так называемой тепловой смерти Вселенной , к которой будто бы закономерно стремится весь окружающий мир. В частности, это должно было проявляться в повышении температуры земной атмосферы и самой планеты в результате выделения тепла при всяком природном процессе преобразования энергии.

В другой интерпретации энтропия рассматривается как мера «рассеяния» энергии в системе. Это толкование энтропии основывается на том факте, что при любом процессе, происходящем в какой-либо замкнутой системе, преобразуется только часть энергии системы, в то время как остаток рассеивается в тепло, причем так, что его нельзя извлечь обратно. Мерой таких потерь или «рассеяния » энергии и является приращение энтропии. При этом численное значение энтропии оказывается пропорциональным величине энергии, перешедшей во внутреннюю энергию участвующих в процессе тел, т.е. в теплоту.

Именно подобное рассеяние энергии является препятствием для реализации вечных двигателей, работающих без пополнения энергетических запасов извне. Например, рассеяние энергии в приводном механизме паровой машины и в самом котле, где нагревается пар для приведения ее в движение, делает невозможным описанный выше вечный двигатель второго рода. Действительно, пусть нагретый пар из котла приводит в движение паровую машину. Представим себе, что приводной механизм этой машины сделан так, что энергия его движения полностью преобразуется в тепло, подводимое обратно к котлу паровой машины. Так вот, в этой, казалось бы, идеальной системе именно из-за наличия потерь будет происходить постоянное убывание рабочей энергии, причем в результате температура и давление пара в котле будут падать, а вместе с ними будет убывать и мощность самой паровой машины.

Другие изобретатели перпетуум мобиле предлагали, например, соединить два часовых механизма так, чтобы ходом одного из них заводилась пружина другого - это давало бы возможность получить «вечную» хронометрическую систему, которая принципиально не противоречила бы закону сохранения энергии. Практические опыты, однако, опровергли эту возможность, потому что такой вечный двигатель останавливался, как только сравнивались приводные усилия обеих пружин. Более того, если даже допустить, что с помощью соответствующих изменений конструкции можно достигнуть переноса существенной части энергии от одной пружины к другой, то и тут мы не сумели бы ничего добиться - именно из-за влияния уже упомянутого рассеяния энергии, сопровождающего каждый рабочий цикл.

Таким образом, с помощью понятия энтропии был сформулирован еще один важный закон, вместе с законом сохранения энергии проливший свет на проблему вечного двигателя второго рода. Одна из его формулировок - это теорема Клаузиуса о стремлении к максимуму энтропии замкнутой системы.

Другая эквивалентная формулировка утверждает, что невозможно создать устройство, постоянно совершающее механическую работу за счет теплоты и преобразующее полученную механическую энергию обратно в тепло . Этот закон называется вторым началом термодинамики. Второе начало термодинамики отвергает также возможность получения энергии путем охлаждения тел ниже температуры окружающей среды. Таким образом, для того чтобы преобразовать теплоту в другой вид энергии (например, в механическую), нам нужно иметь нагреватель (котел) и конденсатор (холодильник). Чем больше разность температур в нагревателе и конденсаторе, тем большую долю тепла можно преобразовать в полезную работу. Если же эта разность будет равна нулю, то и количество произведенной работы окажется нулевым.

Второе начало термодинамики устраняет неполноту закона сохранения энергии, который не делал различия между обратимыми и необратимыми процессами и тем самым оставлял призрачную надежду тем, кто не хотел мириться с невозможностью создания перпетуум мобиле.

Кроме того, второе начало термодинамики налагает запрет и на вечные двигатели, аналогичные перпетуум мобиле второго рода, но основанные на преобразовании других видов энергии. Так, например, невозможна вечная работа пары электромотор - генератор, сидящей на одном валу, которая действовала бы по следующей схеме: электрический ток, вырабатываемый генератором, приводит во вращение электромотор, а механическая энергия электромотора в свою очередь трансформируется в генераторе в электрическую. Если бы оба элемента этой пары работали с 100%-ным к.п.д. (что, естественно, невозможно из-за наличия в них электрических и механических потерь), то подобная система должна была бы поддерживать себя в постоянном движении. Однако она никоим образом не могла бы быть использована для практических целей, потому что, начав отбирать от этого агрегата полезную работу, мы тем самым нарушили бы его энергетическое равновесие, и система бы остановилась.

Этот часто приводимый в литературе пример системы мотор-генератор много раз служил прообразом ряда других, более простых проектов. Правда, при подобных упрощениях невозможность перпетуум мобиле «мотор-генераторного» типа выявляется еще яснее. Ведь, например, можно заменить мотор и генератор системой двух взаимосвязанных ременных шкивов. Наконец, можно ограничиться даже одним шкивом, считая одну его половину ведущим, а другую - ведомым элементом. Можно придумать еще десятки подобных конструкций, но результат всегда будет только один, поскольку всем этим вечным двигателям, как простым, так и сложным, второе начало термодинамики уже огласило свой приговор.

Строгости ради стоит заметить, что этот закон имеет статистический характер и применим только к макроскопическим объектам. В частности, его нельзя использовать при описании движения молекул или малых частиц вещества (броуновское движение ). Кроме того, постоянное тепловое движение, обусловливающее внутреннюю энергию макроскопических тел, не может служить источником энергии для совершения полезной работы.

Согласно историческим записям, первым человеком, предложившим построить подобную машину был ученый, живший в 12 веке. Именно в это время начались Крестовые походы европейцев на Святую Землю. Развитие ремесла, хозяйства и техники потребовало разработки новых источников энергии. Популярность идеи вечного двигателя стала стремительно расти. Ученые пытались построить его, но их попытки не увенчались успехом.

Еще более популярной эта идея стала в 15-16 веках с развитием мануфактурного производства. Проекты вечного двигателя предлагались всеми, кому не лень: от простых ремесленников, мечтавших наладить свою небольшую фабрику, до крупных ученых. Леонардо да Винчи, Галилео Галилей и другие великие исследователи после многочисленных попыток создать вечный двигатель пришли к общему мнению, что это в принципе невозможно.

К такому же мнению пришли ученые, жившие в 19 веке. Среди них был Герман Гельмгольц и Джеймс Джоуль. Они независимо друг от друга сформулировали закон сохранения энергии, характеризующий протекание всех процессов во Вселенной.

Вечный двигатель первого рода

Из этого фундаментального закона следует невозможность создания вечного двигателя первого рода. Закон сохранения энергии гласит, что энергия ниоткуда не появляется и никуда бесследно не исчезает, а лишь принимает новые для себя формы.

Вечный двигатель первого рода - воображаемая система, способна совершать работу (т.е. производить энергию) неограниченное время без доступа энергии извне. Реальная подобная система может совершать работу только засчет своей внутренней энергии. Но эта работа будет ограничена, так как запасы внутренней энергии системы не бесконечны.

Тепловой двигатель для производства энергии должен выполнять определенный цикл, а значит - каждый раз возвращаться в начальное состояние. Первое начало термодинамики гласит, что двигатель для совершения работы должен получать энергию извне. Вот почему невозможно построить вечный двигатель первого рода.

Вечный двигатель второго рода

Принцип работы вечного двигателя второго рода заключался в следующем: отнимать у океана энергию, понижая при этом его температуру. Это не противоречит закону сохранения энергии, но построение такого двигателя также невозможно.

Все дело в том, что это противоречит второму началу термодинамики. Оно заключается в том, что энергия от более холодного тела не может передаваться более горячему в общем случае. Вероятность такого события стремится к нулю, так как оно нерационально.

Вечный двигатель , перпе туум-мо биле (латинское perpetuum mobile переводится вечное движение ) - воображаемая машина, которая, будучи раз пущена в ход, совершала бы работу неограниченно долгое время, не заимствуя энергии извне. Возможность работы такой машины неограниченное время означала бы получение энергии из ничего.

Идея вечного двигателя возникла в Европе, по-видимому, в XIII веке (хотя существуют свидетельства, что первый проект вечного двигателя предложил индиец Бхаскара в XII веке). До этого проекты вечных двигателей неизвестны. Их не было у греков и римлян, которые разработали множество эффективных механизмов и заложили основы научных подходов к изучению природы. Ученые предполагают, что дешевая и практически неограниченная рабочая сила в виде рабов тормозила в античности разработку дешевых источников энергии.

Почему люди так упорно хотели построить вечный двигатель?

В этом нет ничего удивительного. В XII-XIII веке начались крестовые походы и европейское общество пришло в движение. Стало быстрее развиваться ремесло и совершенствоваться машины, приводящие в движение механизмы. В основном это были водяные колеса и колеса, приводимые в движение животными (лошадьми, мулами, быками, ходившими по кругу). Вот и возникла идея придумать эффективную машину, приводимую в движение более дешевой энергией. Если энергия берется из ничего, то она ничего не стоит и это крайний частный случай дешевизны - даром.

Еще популярнее идея вечного двигателя стала в XVI-XVII веках, в эпоху перехода к машинному производству. Число известных проектов вечного двигателя перевалило за тысячу. Создать вечный двигатель мечтали не только малообразованные ремесленники, но и некоторые крупные ученые своего времени, так как тогда не существовало принципиального научного запрета на создание такого устройства.

Уже в XV-XVII веке прозорливые естествоиспытатели, такие как Леонардо да Винчи, Джироламо Кардано, Симон Стевин, Галилео Галилей сформулировали принцип: «Создать вечный двигатель невозможно». Симон Стевин был первым, кто на основе этого принципа вывел закон равновесия сил на наклонной плоскости, что привело его в конце концов к открытию закона сложения сил по правилу треугольника (сложение векторов).

К середине XVIII века, после многовековых попыток создать вечный двигатель, большинство ученых стали считать, что сделать это невозможно. Это был просто экспериментальный факт.

С 1775 года Французская академия наук отказалась рассматривать проекты вечного двигателя, хотя и в это время у французских академиков не было твердых научных оснований принципиально отрицать возможность черпать энергию из ничего.

Невозможность получения дополнительной работы из ничего была твердо обоснована лишь с созданием и утверждением как всеобщего и одного из самых фундаментальных законов природы «закона сохранения энергии».

Сначала Готфрид Лейбниц в 1686 году сформулировал закон сохранения механической энергии. А закон сохранения энергии как всеобщий закон природы сформулировали независимо Юлиус Майер (1845), Джеймс Джоуль (1843–50) и Герман Гельмгольц (1847).

Врач Майер и физиолог Гельмгольц сделали последний важный шаг. Они установили, что закон сохранения энергии справедлив для животных и растений. До этого существовало понятие «живая сила» и считалось, что для животных и растений законы физики могут не выполняться. Таким образом, закон сохранения энергии был первым принципом, установленным для всей познанной Вселенной.

Последним штрихом в обобщении закона сохранения энергии стала специальная теория относительности Альберта Эйнштейна (1905 г.). Он показал, что закон сохранения массы (был такой закон) - часть закона сохранения энергии. Энергия и масса эквивалентны по формуле Е = mс 2 , где с - скорость света.

Утверждение закона сохранения энергии - первого закона термодинамики - сделало попытки создать perpetuum mobime -1 абсолютно безнадежным занятием. И хотя они все еще продолжаются, «генеральное направление» мыслей создателей вечных двигателей изменилось. Новые варианты вечных двигателей рождаются уже в полном согласии с первым началом термодинамики; сколько энергии поступает в такой двигатель, ровно столько же и выходит. Эти двигатели даже называют иначе, чтобы избежать термина «вечный двигатель»

Тем не менее, несмотря на согласие с первым законом и маскирующие названия, эти двигатели остаются типичными perpetuum mobile и сохраняют их основной признак - абсолютную невозможность осуществления

Дело в том, что соблюдение какого-либо одного, даже очень важного закона вовсе не гарантирует возможность того или иного явления. Каждое из них определяется несколькими законами. Поэтому оно может происходить только в том случае, если не нарушает ни одного из тех законов, которые к нему относятся

В частности, для любых тепловых машин соблюдение первого начала термодинамики необходимо, но не достаточно. Существует еще и второе начало термодинамики, соблюдение требований которого столь же обязательно. Новые вечные двигатели, о которых пойдет речь ниже, относятся именно к тепловым машинам; они могли бы работать, только нарушая ограничения, полагаемые вторым законом термодинамики. Поэтому такой двигатель и был назван «вечный двигатель второго рода». Впервые этот термин ввел известный физико-химик В.Оствальд в 1982 году по аналогии со старым классическим perpetuum mobile -1

Кто придумал первый perpetuum mobile -2, установить трудно; во всяком случае, они появились не ранее последней четверти XIX века. В принципах вечных двигателей второго рода нет такого разнообразия, как в принципах создания вечного двигателя первого рода. Основная идея perpetuum mobile -2 едина для всех самых разнообразных проектов

Ведущий идеолог данного направления профессор В.К.Ощепков ставит задачу таким образом: «…отыскать такие процессы, которые позволили бы осуществить прямое и непосредственное преобразование тепловой энергии окружающего пространства в энергию электрическую. В этом я вижу величайшую проблему современности». И далее: «…открытие способов искусственного сосредоточения, концентрации рассеянной энергии с целью придания ей вновь активных форм будет таким открытием в истории развития материальной культуры человечества, что … можно сравнить разве только с открытием первобытным человеком способов искусственного добывания огня»

Если вникнуть в существо перспектив рассматриваемой идеи, то она сводится к тому, что рассеянная «тепловая энергия» окружающего пространства «извлекается», концентрируется и превращается в электрическую энергию, способную производить работу. Нарушения первого закона термодинамики здесь нет. Сколько энергии забирается из «окружающего пространства», столько и превращается в электроэнергию

Такая идея, действительно, чрезвычайно заманчива. «Концентрированная» энергия использовалась бы для нужд человечества, «рассеивалась» бы при этом в окружающей среде, а затем ее можно было бы снова «концентрировать» и пускать в дело. В энергетике человечества осуществился бы вечный круговорот энергии, который позволил бы сразу «убить двух зайцев» - снять как проблему поиска источников энергии, так и проблему теплового, химического и радиационного загрязнения окружающей природы

Чтобы проанализировать все стороны этой грандиозной идеи научно, нужно прежде всего уточнить используемую ее авторами терминологию, перевести ее на современный научный язык

Прежде всего отметим, что «окружающее пространство» само по себе энергии не содержит. Энергия содержится только в материальной среде (веществе или поле), заполняющей это пространство. Поэтому правильно было бы говорить «окружающая среда». Но и такая формулировка тоже не годится. Термин «окружающая среда» имеет разное содержание в зависимости от того, как его использовать. Здесь могут быть два случая

В первом случае под окружающей средой понимают все то, что находится вне границ системы (в данном случае двигателя). Это означает, что в окружающую среду входят по крайней мере атмосфера, гидросфера и литосфера земли, в которых существуют разности давления, температур и химического состава. Следовательно, она включает и запасы топлива, гидроэнергетические ресурсы и так далее. Другими словами в окружающей среде, определяемой таким образом, нет равновесия

Используя неравновесность в окружающей среде, человек всегда получал необходимую ему энергию как в форме теплоты, так и в форме работы. Если бы эта среда была равновесной, то есть вся имела бы один и тот же усредненный и равномерно распределенный химический состав, одну и ту же температуру, одно давление, один уровень воды, одинаковый везде электрический заряд и так далее, то все кругом было бы мертво и неподвижно. Именно неравновесность, наличие разности потенциалов во внешней среде и определяют возможность существования всей энергетики

При такой трактовке термина «окружающая среда» извлечение из нее энергии и превращение ее в работу или электроэнергию давно известно. Ничего нового в таких процессах нет: так всегда и делалось

Во втором случае под окружающей средой понимают только равновесную часть всего окружения системы. Основанием для введения такого более узкого, локального понятия служит то, что в окружении системы всегда имеется в практически неограниченном количестве некая среда, имеющая одни и те же температуру, давление и химический состав. Примером такой среды может служить, например, вода у поверхности океанов, морей, других больших водоемов или атмосферный воздух у поверхности земли. Существующие в них некоторые небольшие разности потенциалов в круг рассмотрения не входят

Такая равновесная окружающая среда, как показывает многовековой опыт человечества, не может служить источником энергии, поскольку никаких разностей потенциалов, неравновесностей, которые можно было бы использовать, в ней нет. Она ведет себя, как та «мертвая вода» без разницы уровней, о которой писал Леонардо да Винчи

Наконец, о первой части выражения «тепловая энергия окружающего пространства». Поскольку теплота есть энергия только в процессе перехода, говорить о «тепловой энергии», да еще «содержащейся» в окружающей среде, некорректно. Энергия теплового движения частиц составляет часть внутренней энергии тела, причем выделить ее «в чистом виде» практически невозможно. Поэтому в науке пользуются термином «внутренняя энергия»

Разберем понятия «концентрация» и соответственно «рассеяние» энергии

Концентрация - это понятие, связанное с сосредоточением чего-либо в определенном месте (объеме или поверхности). Применимо к энергии это соответствует ее количеству, приходящемуся на единицу объема или поверхности (Дж/м 3 или Дж/м 2). Если это количество растет, говорят о концентрировании энергии, если падает - о ее рассеянии

Сторонники perpetuum mobile -2 используют этот термин в смысле, не имеющим отношения к действительному ее содержанию. Они называют «концентрированной» энергией электрическую энергию и работу, а «рассеянной» - внутреннюю энергию тел и теплоту. Однако разница в них не в концентрации, а в степени упорядоченности, организованности движения частиц. Именно эта упорядоченность и определяет в основном качественную сторону энергии, ее работоспособность

Теперь, после уточнения всех терминов, мы можем вернуться к принципиальным основам perpetuum mobile -2. Становится очевидным, что его идея основана на получении работы из равновесной окружающей среды путем использования той части ее внутренней энергии, которая связана с хаотическим тепловым движением молекул

В.К.Ощепков назвал такой процесс ученым термином «энергетическая инверсия» (инверсия - от лат. inversio - «перестановка», «переворачивание»). Другими словами, это - обратное превращение части внутренней энергии равновесной окружающей среды в электроэнергию или работу

Именно такой процесс запрещен вторым началом термодинамики. Поэтому, чтобы доказать возможность создания вечного двигателя второго рода, нужно неизбежно опрокинуть или обойти «стоящий на дороге» второй закон термодинамики

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «strizhmoscow.ru» — Все об устройство автомобиля. Информационный портал