Магнитный вечный двигатель. Магнитный «вечный» двигатель

В истории попыток изобрести «вечный» двигатель магнит сыграл не последнюю роль. Неудачники-изобретатели на разные лады старались использовать магнит, чтобы устроить механизм, который вечно двигался бы сам собой. Вот один из проектов подобного «механизма» (описанный в XVII веке англичанином Джоном Вилькенсом, епископом в Честере).


Мнимый вечный двигатель.

Сильный магнит А помещается на колонке. К ней прислонены два наклонных желоба М и N , один под другим, причем верхний М имеет небольшое отверстие С в верхней части, а нижний N изогнут. Если, – рассуждал изобретатель, – на верхний желоб положить небольшой железный шарик В , то вследствие притяжения магнитом А шарик покатится вверх; однако, дойдя до отверстия, он провалится в нижний желоб N , покатится по нему вниз, взбежит по закруглению D этого желоба и попадет на верхний желоб М ; отсюда, притягиваемый магнитом, он снова покатится вверх, снова провалится через отверстие, вновь покатится вниз и опять очутится на верхнем желобе, чтобы начать движение сначала. Таким образом, шарик безостановочно будет бегать взад и вперед, осуществляя «вечное движение».

В чем абсурдность этого изобретения? Указать ее не трудно. Почему изобретатель думал, что шарик, скатившись по желобу N до его нижнего конца, будет еще обладать скоростью, достаточной для поднятия его вверх по закруглению D ? Так было бы, если бы шарик катился под действием одной лишь силы тяжести: тогда он катился бы ускоренно. Но наш шарик находится под действием двух сил: тяжести и магнитного притяжения. Последнее по предположению настолько значительно, что может заставить шарик подняться от положения В до С . Поэтому по желобу N шарик будет скатываться не ускоренно, а замедленно, и если даже достигнет нижнего конца, то во всяком случае не накопит скорости, необходимой для поднятия по закруглению D .

Описанный проект много раз вновь всплывал впоследствии во всевозможных видоизменениях. Один из подобных проектов был даже, как ни странно, патентован в Германии в 1878 г., т. е. тридцать лет спустя после провозглашения закона сохранения энергии! Изобретатель так замаскировал нелепую основную идею своего «вечного магнитного двигателя», что ввел в заблуждение техническую комиссию, выдающую патенты. И хотя, согласно уставу, патенты на изобретения, идея которых противоречит законам природы, не должны выдаваться, изобретение на этот раз было формально запатентовано. Вероятно, счастливый обладатель этого единственного в своем роде патента скоро разочаровался в своем детище, так как уже через два года перестал вносить пошлину, и курьезный патент потерял законную силу; «изобретение» стало всеобщим достоянием. Однако оно никому не нужно.

Предложил любитель науки, изобретатель и кол- лекционер, иезуит Анастасиус Кирхер (1602-1680 гг.) его двигатель предельно прост. Как вид- но из рисунка, он состоит из железного круга (черный на рисунке), на котором радиально расположены направленные наружу железные стрелы Этот круг должен вращаться под действием четы рех магнитов I , F , G , H , расположенных на внешнем кольце.

Почему Кирхер решил, что круг со стрелами будет вращаться, совершенно непонятно. Все предыдущие изобретатели таких кольцевых двигателей пытались создать какую-то асимметрию, чтобы вызвать силу, направленную по касательной. У Кирхера таких мыслей не возникло. Он мыслит еще в совершенно средневековом духе. Он даже серьезно утверждал, что притягательная сила магнита увеличится, если его поместить между двумя листьями растения Isatis Sylvatica.

Более интересный и оригинальный магнитный вечный двигатель описал в соей книге «Сотня изобретений» (1649 г.) Джон Уилкинс. К шаровому магниту, расположенному на стойке, ведут два наклонных желоба: один прямой, установленный выше, другой изогнутый вниз, установленный под прямым. Изобретатель считал, что железный шарик, помещенный на верхний желоб, покатится вверх, притягиваемый магнитом. Но так как перед магнитом в верхнем желобе сделано отверстие, шарик провалится в него, скатится по нижнему желобу и через изогнутую часть снова выскочит наверх и двинется к магниту и так далее до бесконечности.

Уилкинс, который хорошо разбирался в принципиальных вопросах механических perpetuum mobile , оказался на высоте и в этом случае. Закончив описание этой конструкции, он пишет: «Хотя это изобретение на первый взгляд кажется возможным, детальное обсуждение покажет его несостоятельность». Основная мысль Уилкинса в этом обсуждении сводится к тому, сто если даже магнит достаточно силен, чтобы притянуть шарик от нижней точки, то он тем более не даст ему провалиться через отверстие, расположенное совсем рядом. Если же, наоборот, сила притяжения будет недостаточна, то шарик просто на будет притягиваться. В принципе объяснение Уилкинса правильное; характерно, что он четко представляет себе, как быстро уменьшается сила притяжения магнита с увеличением расстояния до него

Возможно, Уилкинс учел и взгляды знаменитого Уильяма Гильберта (1544-1603 гг.) -- придворного врача королевы Елизаветы Английской, который тоже не поддержал идею этого вечного двигателя

В книге Гильберта «О магните, магнитных телах и большом магните -- Земле» (1600 г.) не только дана сводка уже известных к тому времени сведений о магнетизме, но и описаны новые результаты, полученные в многочисленных экспериментах.

В XX веке была все же найдена возможность осуществить устройство с шариком, «вечно» бегущим по двум желобам, в точности соответствующее по внешнему виду магнитному вечному двигателю, описанному Уилкинсом. Вносятся лишь небольшие изменения в модель Уилкинса. Верхний желоб изготовляется из двух электрически изолированных одна от другой металлических полос, а вместо постоянного магнита на стойке устанавливается электромагнит. Обмотка электромагнита присоединена к аккумулятору или другому источнику питания так, чтобы цепь замыкалась через железный шарик, когда он находился на верхнем желобе, касаясь обеих его полос. Тогда электромагнит притягивает шарик. Докатившись до отверстия, шарик размыкает цепь, проваливается и скатывается по нижнему желобу, возвращаясь по инерции на верхний желоб, и так далее. Если спрятать аккумулятор в стойку (или незаметно провести через нее провода для питания электромагнита извне), а сам электромагнит поместить в шаровой футляр, то можно считать. Что действующий perpetuum mobile готов. На тех, кто не знает секрета, он производит большое впечатление.

Нетрудно видеть, что в такой игрушке как раз устранен тот недостаток, на который показывал Уилкинс,-- возможность того, что шарик притянется к магниту и не провалится в отверстие. Магнит перестает действовать как раз в тот момент, когда шарик должен провалиться в отверстие, и снова включается тогда, когда нужно тянуть шарик вверх.

Для современного человека секрет лежит на поверхности -- по такому же принципу работают все электроприборы, -- работа, совершаемая электрическим током, переходит в механическую или другую (всегда даже с потерями какой-либо ее части) -- значит, их тоже можно считать «вечными» двигателями.

В дальнейшем были предложены и многие другие магнитные perpetuum mobile , в том числе и довольно замысловатые; некоторые из них были построены, но их постигла та же судьба, что и остальные. Идея одного из таких построенных магнитных двигателей была выдвинута уже в конце XVIII века. Некий шотландский сапожный мастер по фамилии Спенс нашел такое вещество, которое экранировало притягивающую и отталкивающую силу магнита. Известно даже, что оно было черного цвета. С помощью этого вещества Спенс обеспечил работу двух изготовленных им магнитных вечных двигателей.

Успехи Спенса были описаны шотландским физиком Дэвидом Брюстером (1781-1868 гг.) в серьезном французском журнале «Анналы физики и химии» в 1818 году. Нашлись даже очевидцы: в статье написано, сто «мистер Плейфер и капитан Кейфер осмотрели обе эти машины (они были выставлены в Эдинбурге) и вызвали удовлетворение тем, что проблема вечного двигателя, наконец, решена».

Нужно отметить, что в части открытия вещества, экранирующего магнитное поле, Спенс ничего особенного не сделал и его «черный порошок» для этого не нужен. Хорошо известно, что для этого достаточно листа железа, которым можно заслонить магнитное поле. Другое дело создать таким путем вечный двигатель, поскольку для движения листа, экранирующего магнитное поле, нужно в лучшем случае затратить столько же работы, сколько даст магнитный двигатель

Общее количество магнитных вечных двигателей все же было меньше, чем механических и особенно гидравлических. К последним мы и перейдем

В истории попыток изобрести «вечный» двигатель магнит сыграл не последнюю роль.
Неудачники-изобретатели на разные лады старались использовать магнит, чтобы устроить механизм, который вечно двигался бы сам собой. Вот один из проектов подобного «механизма» (описанный в XVII веке англичанином Джоном Вилькенсом, епископом в Честере).

Сильный магнит А помещается на колонке. К ней прислонены два наклонных желоба М и N, один под другим, причем верхний М имеет небольшое отверстие С в верхней части, а нижний N изогнут.

Если, – рассуждал изобретатель, – на верхний желоб положить небольшой железный шарик В, то вследствие притяжения магнитом А шарик покатится вверх; однако, дойдя до отверстия, он провалится в нижний желоб N, покатится по нему вниз, взбежит по закруглению D этого желоба и попадет на верхний желоб М; отсюда, притягиваемый магнитом, он снова покатится вверх, снова провалится через отверстие, вновь покатится вниз и опять очутится на верхнем желобе, чтобы начать движение сначала. Таким образом, шарик безостановочно будет бегать взад и вперед, осуществляя «вечное движение».

В чем абсурдность этого изобретения? Указать ее не трудно.
Почему изобретатель думал, что шарик, скатившись по желобу N до его нижнего конца, будет еще обладать скоростью, достаточной для поднятия его вверх по закруглению D? Так было бы, если бы шарик катился под действием одной лишь силы тяжести: тогда он катился бы ускоренно. Но наш шарик находится под действием двух сил: тяжести и магнитного притяжения. Последнее по предположению настолько значительно, что может заставить шарик подняться от положения В до С. Поэтому по желобу N шарик будет скатываться не ускоренно, а замедленно, и если даже достигнет нижнего конца, то во всяком случае не накопит скорости, необходимой для поднятия по закруглению D.

Описанный проект много раз вновь всплывал впоследствии во всевозможных видоизменениях.
Один из подобных проектов был даже, как ни странно, патентован в Германии в 1878 г., т. е. тридцать лет спустя после провозглашения закона сохранения энергии!

Изобретатель так замаскировал нелепую основную идею своего «вечного магнитного двигателя», что ввел в заблуждение техническую комиссию, выдающую патенты И хотя, согласно уставу, патенты на изобретения, идея которых противоречит законам природы, не должны выдаваться, изобретение на этот раз было формально запатентовано. Вероятно, счастливый обладатель этого единственного в своем роде патента скоро разочаровался в своем детище, так как уже через два года перестал вносить пошлину, и курьезный патент потерял законную силу; «изобретение» стало всеобщим достоянием. Однако оно никому не нужно.

Источник: Я.И. Перельман. Занимательная физика. Книга 2.



Знаете ли вы?

об органических магнитах

Обычно магнетизм связан с железом, кобальтом, никелем или редкоземельными элементами.
Но вот в 1985 году в США был открыт первый органический магнит.
В 1991 году японцы создали сложный органический магнит, в состав которого входят углерод, водород, азот и кислород. Однако магнитные свойства этого вещества начинали проявлять лишь вблизи абсолютного нуля.
В 1997 году ученые нашли еще один органический магнит из немагнитного ванадия, окруженного молекулами тетрацианоэтилена, который магнитил до 75 градусов по Цельсию. Магнетизм в органических магнитах возникает потому, что атомы выстраиваются в них упорядоченным образом.
Однако, большая часть «органических магнитов», известных к настоящему времени, проявляют магнитные свойства только при низких температурах.

А есть ли магнитные свойства у широко распространенного на Земле углерода?
Ведь чистый углерод (графит, алмаз) не действуют на стрелку компаса.

Но вот в 2001 году в России были обнаружены ферромагнитные свойства у молекул фуллерена С60 , его остаточная намагниченность, сохранялась при температурах до 225°C (точка Кюри). Среди производных материалов от С60 оказалось много сверхпроводников. Фуллерен С60 обладает в полтора раза меньшей плотностью, чем графит, и вдвое меньшей, чем алмаз. Пытаясь увеличить эту плотность при помощи высоких давлений при высокой температуре, ученые получили несколько образцов еще одной формы углерода с выраженными ферромагнитными свойствами
Получается, что углерод может обладать ферромагнитными свойствами при обычных температурах.

Малая плотность органических магнитов позволит создавать легкие электромоторы и генераторы, магнитооптические устройства запоминания и хранения информации. Органические магниты гораздо дешевле металлических, и их легче изготавливать.


Любознательным

Оптическое «парение»

В воздушной и водяной струях можно наблюдать «парение» мячиков, и их устойчивость удивительна. Свет также способен «держать» шарики в воздухе: луч достаточно мощного лазера поднимает и удерживает во взвешенном состоянии прозрачные стеклянные сферы диаметром около 20 мкм. Как свет может поднять такой шарик? Как достигается устойчивость при горизонтальных возмущениях?

Оказывается...
Свет обладает импульсом и поэтому может оказывать давление. Лазер, используемый в описанных опытах, создает интенсивный пучок света, который способен поднять шарик. Устойчивость шарика обусловлена преломлением света внутри него. Интенсивность пучка лазерного света максимальна в центре. Пусть шарик несколько смещен относительно центра пучка, но не покидает его пределов. Свет, падающий на шарик у края пучка, преломляется внутрь шарика, проходит внутри него и затем, вновь преломляясь, выходит наружу в направлении к центру пучка. В результате луч лазера несколько отклоняется, и, следовательно, он должен действовать на шарик с некоторой силой. Свет, входящий в шарик несколько сбоку (по центру луча), тоже отклоняется, но уже не к центру, а вбок. За счет этих отклонений возникает как подъемная сила, так и сила, действующая вбок. Интенсивность света, отклоняемого к центру шарика, меньше, чем интенсивность света, отклоняемого в сторону, поэтому результирующая сила направлена к центру. Если шарик отходит от центра луча, то эта результирующая сила возвращает его.

Тема «вечных двигателей» сейчас очень активно обсуждается в Интернете, приводится уйма различных проектов, но потенциал этой идеи всё ещё не израсходован.

Одним из направлений «вечных двигателей» являются магнитные двигатели и преобразователи магнитной энергии. История использования магнитов для создания энергии уходит в века, ведь скрытая сила магнитов придавала им магическое значение и будоражила воображение. Сейчас в мире известно много патентов магнитных двигателей, часть информации ещё с советских времён засекречена, но пока ещё нет ни одного работающего двигателя, о котором было бы известно. Все те видео, что размещены на «YouTube», преследуют разные цели, но не демонстрацию работающего двигателя.

Экологичные японские мотоциклы

Самым старым магнитным двигателем, о котором известно широкому кругу, является магнитный двигатель «Perendev». Он, как всё гениальное, имеет простую и понятную конструкцию. Используя внешнее качественное изготовление и своё первенство, авторы умудрились даже найти покупателей на свои двигатели. Используемый в Японии магнитный двигатель « Минато » изначально номинировался как экономичный электрический двигатель с постоянными магнитами, он не входит в число автономных («вечных») двигателей. Сейчас на его базе в Японии производят экологичные гибридные мотоциклы.

Вариации магнитных двигателей так многообразны, что это отдельная тема, требующая большего объёма и времени для рассмотрения. Следует отметить, что магнитные двигатели в России имеют патенты не на «Изобретение», а на «Полезную модель».

Соответственно, запатентованы просто идеи, не имеющие возможности практической реализации, которые, может быть, никогда не смогут осуществиться по техническим или научным причинам.

Вечный двигатель, возможно, возможен

Следует пояснить, почему идея «вечного двигателя» на постоянных магнитах может привести к созданию работающего двигателя. Начнём с закона сохранения энергии: нет, я не хочу его отрицать, просто я думаю, что надо смотреть глубже. Многие задаются вопросом, откуда энергия? И говорят, что из ничего не может быть работы. А кто сказал, что магнитное поле - это ничего? Ведь оно имеет определённое значение плотности энергии магнитного поля, которая достигает 280 кДж/куб.м.

Это потенциальная энергия магнитного поля. И в магнитном двигателе происходит преобразование потенциальной энергии в кинетическую. Данный вид преобразования уже существует: это генератор постоянного тока. Если вы будете вращать или двигать проводник, то электрического тока в нём не произойдёт. Но когда вы сделаете это в магнитном поле, то в проводнике возникнет движение электронов - произойдёт преобразование потенциальной энергии магнитного поля в кинетическую энергию электронов.

А вот то, что магнитное поле не исчезает и не уменьшается после произведённой им работы, пока за рамками знаний человечества. Ведь мы не знаем, какая сила вечно вращает электроны вокруг ядра, заставляет не исчезать гравитационное поле, вращает планеты, заставляет светить Солнце. Проходят века, а энергия не исчезает (сильное магнитное поле всё-таки начинает ослабевать). Даже немного смешно, когда профессор из университета, который ведёт серьёзную научную работу, на эти вопросы начинает отвечать по-детски: «Ну, там какая-то сила чуть-чуть подкручивает». Зато этот же профессор, не задумываясь, говорит: работать не будет, потому что такого не может быть. Ясно одно, мы снова упёрлись в своё незнание мира, и скоро должен произойти очередной качественный скачок.

«Магнитный двигатель» № 34826

Я тоже являюсь автором одного из патентов с постоянными магнитами, идея зародилась ещё в детстве, но воплощение произошло только в 2003 году. При оформлении своего двигателя я использовал прототип «Двигатель на постоянных магнитах» (патент России № 2177201), но есть более схожий прототип «Постоянное устройство преобразования движения магнита» патента Джона Эклина (патент США № 3879622 от 22.04.75 г.). Мой патент называется «Магнитный двигатель» № 34826.

В отличие от большинства других изобретателей, я пошёл немного другим путём - применил ферромагнитный экран между магнитами. В данном двигателе используется способность магнитного поля быть изолированным с помощью ферромагнитного экрана.

Элементарный детский опыт: если к магниту прислонить стальную пластинку, то за пластинкой уже отсутствует магнитное поле. Только пластинка должна быть достаточно толстой, чтобы экранировать поле. Вторая хитрость: из физики мы знаем, да и из жизни тоже, что если сила, приложенная к телу, перпендикулярна перемещению тела, то эта сила не производит работы при данном перемещении.

Отсюда следует вывод: если мы будем перемещать в магнитном поле ферромагнитный экран, перпендикулярно силовым линиям магнитного поля, то магнитное поле не производит работу сопротивления перемещению экрана. В то же время, экран, перекрыв всю поперечную площадь магнита, позволит поднести второй отталкивающийся магнит без преодоления сил магнитного отталкивания. Даже наоборот, второй магнит ещё и притянется к экрану. Если же вывести экран между магнитами, то магниты разлетаются в стороны.

Осталось придумать такую схему конструкции, чтобы перемещения узлов могли влиять друг на друга. Если измерить вредную работу на перемещение экрана и полезную работу перемещения магнитов, то образуется положительная разница работ, которую и можно использовать как постоянный источник дополнительной энергии.

Сейчас стали появляться новые материалы с выдающимися характеристиками (пиролитический углерод, оксид кобальта), которые позволят в будущем заменить ферромагнитный экран на антиферромагнитный или диамагнитный, что сильно снизит вредную работу и повысит производительность этого двигателя.

С того времени, как я оформил патент, прошло уже 12 лет, но у меня, как и у многих, нет работающего двигателя.

Основная причина в том, что сложность изготовления двигателя с современными сверхсильными магнитами достигает уровня производства двигателя внутреннего сгорания, плюс большая финансовая стоимость; в домашних условиях, как вы понимаете, это не сделать.

В процессе работы над двигателем я создал сайт, с помощью которого мне удалось пообщаться в Интернете, и вживую со многими людьми, занимающимися и интересующимися данной темой.

И почти все задают вопрос: почему эта технология не поддерживается государством или промышленностью? И сами на него отвечают: данная технология опасна для существующего мирового порядка, ведь при её внедрении могут произойти большие катаклизмы.

Пока что автономный магнитный двигатель не существует, но это не означает, что он невозможен вообще.

Посвящается великому сыну многострадального сербского народа Николе Тесла.
Вечный двигатель?! - проще пареной репы.
Прежде чем дать его конструкцию или хотя бы выразить предположение на конструкцию , придется прочитать, а вернее изложить ряд необходимых посылок, которые позволят всем желающим попробовать построить тот или иной вариант вечного двигателя (вечного двигателя (ВД)) , разумеется, без нарушения каких бы то ни было известных физических законов.И так, поскольку основным элементом нашего вечного двигателя (вечного двигателя (ВД)) будет постоянный магнит и его магнитное поле, то с этого и начнем. Вижу скептические улыбки. Скажите, что об этом много писано и сказано. Соглашусь с Вами, но не полностью. Я просмотрел достаточно материала по этой теме, но то о чем собираюсь Вам поведать, не встретил. Поэтому наберитесь терпения.Проведем ряд очень простых опытов.Опыт 1.
Берем два магнита (подходят круглые магниты от старых динамиков) и убеждаемся в том, что одноименные полюса магнитов отталкиваются, а разноименные - притягиваются. Хлопать в ладоши еще рано;Опыт 2.
Берем пластинку, которая обладает ферромагнитными свойствами, попросту железную, толщиной эдак 1,5 мм., не менее (об этом будет сказано ниже) по размеру перекрывающую плоскости магнитов и убеждаемся, что она с одинаковой силой притягивается как к одной плоскости магнита, так и к другой.
Прошу, выглядеть бодрее, самое интересное впереди;Опыт 3.
Кладем один магнит на стол и на него сверху кладем нашу пластинку, разумеется, она притянется. На эту пластину сверху кладем второй магнит. Магнит притянется, но уже к пластине. Теперь внимание! Снимаем верхний магнит с пластины и опускаем этот же магнит на пластину только другим полюсом, он снова притянется к пластине с той же силой.
Кое у кого появляется интерес к моему изложению. Это уже не плохо.Опыт 4.
Закрепляем один магнит на столе любым полюсом вверх. Кладем на этот магнит пластину, но уже из не магнитного материала. Лучшим материалом послужит фторопластовая пластина. На худой конец можно воспользоваться обыкновенной картонкой из коробки от праздничного торта. Сверху на эту картонную пластину кладем второй магнит, чтобы он притянулся через пластину к закрепленному магниту на столе. А теперь (!) попробуем перемещать нашу картонную пластину, в ее плоскости, в любую сторону. Мы убедимся в том, что верхний магнит, свободно лежащий на пластине практически будет оставаться на месте.Согласен господа, что и здесь я ни сказал ничего удивительного.Опыт 5.
В опыте 4 заменим картонную пластину железной и попробуем ее перемещать. Убедимся, что лежащий сверху магнит будет перемещаться вместе с пластиной, будто снизу под железной пластиной и нет другого магнита. В сущности, мы нарушили магнитную связь двух магнитов. Это нарушение магнитной связи между двумя магнитами мы должны были заметить в опыте 3. Но это было трудно видеть.Для большей убедительности, нарушения магнитной связи между магнитами, мы, между верхним магнитом и магнитной пластиной положим фторопластовую пластину для уменьшения трения между магнитом и пластиной и повторим опыт. Результат опыта останется прежним.Опыт 6. Самый интересный.
Закрепим неподвижно два наших магнита, расположив их параллельно, любыми полюсами друг к другу. Расстояние между магнитами сделаем (для удобства проведения опыта) примерно 4мм, а между ними расположим, нашу железную пластину примерно на равном расстоянии от каждого магнита. А теперь попробуем перемещать нашу пластину в любом направлении, в плоскости ее нахождения. Вы убедитесь, что пластина перемещается столь свободно и легко, будто и нет рядом с ней никаких магнитов, будто на пластину они и не действуют. Надо заметить, что если будет и один магнит, то пластина будет перемещаться также свободно. Почувствовать действие магнитов на пластину можно будет только в тот момент, когда пластина будет полностью выводиться из зоны действия магнитов. Но эта величина очень мала по сравнению с силами притягивания или отталкивания этих же магнитов.Думаю, у многих терпеливых, выслушавших мое нудное изложение, после шестого опыта, тонус поднялся до максимального уровня. Если нет, то я не виноват. А у Николы Тесла , думаю, это было основной посылкой для создания привода для своего диковинного автомобиля.Далее, господа, дело техники, где интерес уже другой.Теперь попробую развить сказанное до создания вечного двигателя (ВД) , которые должны будут устанавливаться, практически на все виды наземного транспорта и не только наземного.Вернусь к некоторым известным выкладкам, а затем буду излагать возможные варианты вечного двигателя (ВД) .Вспомним устройство магнита, где домены (маленькие магнитики) ферроматериала, из которого он делается, уложены в строгом порядке и зафиксированы в данном положении. Поля всех маленьких магнитиков (доменов) складываются. А поскольку эти поля все в строгом одном направлении, то общее их поле приобретает свое максимальное значение, которым обладает магнит.Если к такому магниту поднеси железку или в нашем случае, железную пластину, то она притянется к магниту.

Обращаю Ваше внимание на то, что при выведении железки из зоны действия магнита домены магнита не меняют своего первоначального положения. Иначе ведут себя домены в нашей железной пластине. Они (домены) там так же присутствуют, но до введения ее в поле магнитов направление действия их хаотично и не могут создать большого суммарного магнитного поля. При введении ее в поле постоянного магнита, домены пластины (на период, пока они находятся в поле магнита), выстраиваются в направлении определяющим полем постоянного магнита, см. рис. 1.
При расположении пластины между двумя магнитами, как в опыте 3, картина доменов в пластине будет выглядеть так, см. рис.2. (Получается, что можно сделать магнит с одноименными полюсами (!!!)). При выведении пластины из зоны действия магнитов, картина доменов в пластине будет выглядеть так, см. рис 3.Следует обратить внимание на то, что при выводе пластины из зоны постоянного магнита, силы, сопротивляющиеся этому выведению, представляют небольшую тонкую полоску взаимодействия магнита и пластины, это можно понять из рис.3.А теперь, глядя на рис.1 и рис.2, у Вас отпадут сомнения в правомерности опыта 6, да и сам опыт дает возможность хорошо это прочувствовать.И о толщине пластины. Просто ее надо выбирать такой, чтобы поле магнитов не могло "прошить" ее насквозь, а доменов в пластине хватало на компенсацию доменов магнитов приложенных к ней с двух сторон. В нашем примере, нас устраивает толщина в 1,5 мм.Теперь будем конструировать возможные варианты вечного двигателя (ВД) .Вариант №1.
вечного двигателя (ВД) представляет собой комплект из трех маятников.Основными элементами вечного двигателя (ВД) будут три вала 1, 2, 3, см. рис.4, закрепленных в подшипниках стоек (стойки не показаны на рисунке). На каждом конце каждого вала, перпендикулярно его оси жестко закреплены по одной консоли. На конце одной консоли закреплен постоянный магнит, сама эта консоль не должна быть магнитной. Вторая консоль каждого вала представляет собой магнитную пластину, которая будет служить экраном для магнитных полей постоянных магнитов. Далее, для каждого магнита валов устанавливаются еще два магнита жестко закрепленных на стойках и расположенных по разные стороны от вала, что также хорошо видно на рис. 4. Там же хорошо просматривается и взаимное расположение всех магнитов и экранов.

При повороте любого вала вокруг своей оси, поворачиваются его магнит и экран.Если какой либо вал вместе с консолями повернуть на определенный угол, а затем отпустить, то под действием гравитационных сил действующих на консоли, вал начнет поворачиваться. Магнит консоли при достижении магнитного поля магнита расположенного на стойке, притянется к нему, несмотря на то, что между ними имеется зазор, и будут в таком состоянии до тех пор, пока между ними (магнитами) не расположится экран от другого вала при его повороте. Вал с консолями, освободившись от удержания магнитов, с помощью экрана другого вала, под действием гравитационных сил, начнет поворачиваться в другую сторону и при достижении магнита стойки расположенной по другую сторону валов, зафиксируется магнитами и, в то же время, своим экраном освободит от удержания другой вал. И так по замкнутому циклу.Как Вы уже заметили, что в данной конструкции используется не только , но и гравитационное поле земли.Осталось запустить тройственный маятник в работу. Это я предлагаю сделать Вам. Следует заметить, что при колебании, маятники теряют часть своей кинетической энергии, на сопротивление воздуху, часть энергии тратится на отрыв от экранирующей пластины и часть энергии тратится на сопротивление скольжению консолей по их направляющим, да и гравитационные силы забирают часть кинетической энергии. Но силы притяжения магнитных полей компенсируют все эти потери.

Вариант №2
Эта конструкция вечного двигателя (ВД) несколько сложнее. Она не использует гравитационное поле земли и представляет собой вечный двигатель (ВД) с ротором и статором, а также c дополнительным устройством, которое в нужный момент вводит и выводит экраны из зоны взаимодействующих магнитов ротора и статора.

Основные элементы вечного двигателя (ВД) показаны на рис.5, рис.6 и рис.7. На рис.5 показан вид вечного двигателя (ВД) сверху. Статором (неподвижная часть вечного двигателя (ВД) ) является пластина, для удобства показана в виде круга. На этой пластине закреплены диаметрально два магнита с южным рабочим полюсами (S). Ротором (подвижная часть вечного двигателя (ВД) ) является тоже пластина, на которой расположены равномерно по кругу пять магнитов с обоими рабочими полюсами (S и N). Такое количество магнитов на роторе и статоре выбрано из соображения лучшего объяснения работы вечного двигателя (ВД) .В действительности, в количественном отношении нет ограничений.Желательно только, чтобы ротора и статора было разнесено по времени.Расположение пластин ротора и статора относительно друг друга хорошо видно на рис.7. В направлении диаметральных магнитов статора располагается экран, который можно видеть на рис.7. Конструкцию экрана и его привод можно смотреть на рис.6.А теперь представьте, что один (первый) магнит статора экранирован от действия на него магнитов ротора. Второй магнит статора свободен от экрана и зона его действия распространяется на ближайшие две пары плюсов магнитов ротора. Если посмотреть на южный полюс верхнего магнита статора рис.5, то видим, магнит ротора, справа от него, ближе к нему южным полюсом и отталкивается от него, поворачивая ротор по часовой стрелке. Магнит слева, расположен ближе к нему северным полюсом и притягивается, вращая ротор в том же направлении. В это же самое время, пока верхний полюс магнита статора взаимодействовал со своими магнитами ротора, магнит ротора, расположенный под нижним магнитом статора проходил "мертвую зону". Когда же сила притяжения второго магнита приблизится к максимальной, вводится экран в поле взаимодействующих магнитов и выводится экран из зоны первого магнита статора. Первый магнит вступает во взаимодействие с другими парами полюсов магнитов ротора по только что рассмотренной схеме происходящей со вторым магнитом. Далее цикл повторяется, а ротор получает постоянное воздействие на вращение в одну сторону.
Надо заметить, что можно, наверное, и нужно задействовать и второй полюс магнита статора, тогда просто появится еще одно магнитное кольцо на роторе.Несколько слов об экранах. Вариантов изготовления их может быть много. Я же выбрал два магнита на статоре, поэтому представлю предполагаемый экран для такого варианта, см. рис.6. Экран, который скользит по направляющим, установленным на статоре (не показаны на рисунках).Механизм ползункового перемещения экрана состоит из трех шестеренок 4, 5, и 6 и пружин, см рис.6. Шестеренка 4 установлена на оси вращающегося ротора и постоянно вращается вместе с ротором. Шестеренки 5 и 6 установлены на осях, которые расположены на экране и, перемещаются вместе с экраном. Экран в крайних своих точках становится на защелки.Поскольку экран может занимать только два положения, т.е. перекрывать один и освобождая другой магнит статора, и наоборот. Шестеренки 5 и 6, к которым крепятся пружины перемещения экрана, вступают в зацепление с шестеренкой 4 по очереди. перемещения экрана в ту или другую сторону и снятия его с защелок, установлен на роторе и срабатывает в нужное время работы вечного двигателя (ВД) (на рисунке не показан). Этот вариант работы шестеренок удобен для объяснения, но не для работы. Поочередное зацепление шестеренок 5 и 6 с шестеренкой 4 не требует больших перемещений, поэтому, их удобнее разместить на отдельной плате, размещающейся на статоре в направляющих, как и сам экран, или же шестеренки 5 и 6 установить на кулисе. Механизм перемещения этой платы или кулисы так же располагается на роторе. Думаю, что перемещать экран можно и без шестеренок и кулис, используя отталкивающее действие двух магнитов. Один магнит должен быть расположен на статоре, а другой на раме экрана. Между этими двумя магнитами должен вращаться вместе с ротором другой экран с окнами, через которые будут взаимодействовать магниты, перемещая основной экран в нужную сторону.Следует сказать и то, что такие вечные двигатели (ВД) будут очень тихоходные, так как не представляется возможным быстро вводить и выводить экраны из зоны действия магнитов.Вариант № 3.
Вариантов конструкций вечного двигателя (ВД) можно придумывать и придумывать, но принцип останется прежним. Я же дам последний вариант, который как мне кажется, стал прообразом вечного двигателя (ВД) Николы Тесла .Представьте, что мы с Вами изготавливаем вечный двигатель (ВД) по второму варианту, но в котором, вместо введения и выведения экранов между магнитами ротора и статора расположены электромагнитные катушки. На установленные катушки, в момент, когда надо было вводить и выводить экраны, подается и отключается ток определенной частоты и силы. Электромагнитное поле катушек будет играть роль экранов. При подаче напряжения на катушки, появляется электромагнитный экран, при снятии напряжения с катушек, экран исчезает.Такой вечный двигатель (ВД) может развивать любые скорости вращения при любых мощностях.Одно замечание. По моему мнению, частота напряжения, подаваемая на катушки электромагнитных экранов, должна быть значительно больше частоты вращения ротора вечного двигателя (ВД) . В таком случае магниты ротора и статора не успеют ни притянуться, ни оттолкнуться ввиду большой инерционной массы магнитов, а смена полюсов электромагнитных катушек, позволит легко скользить магнитам ротора по "волнам" переменного тока в направлении его вращения. использовал на своем автомобиле и аккумулятор, и электронную схему. Какую роль играли эти вещи, нам видимо не узнать. Но предполагать можем. Может быть, аккумулятор питал электронную схему, от которой Никола получал напряжение нужных ему параметров, может быть, аккумулятор играл роль только опорного напряжения или использовался только для пуска, а вечный двигатель (ВД) сам генерировал нужное напряжение?! Все остается тайной. Почему? Думаю, для него это было уже мало интересным, да и окружение небыли к нему дружелюбным. Сам же Никола увлекся уже энергией Космоса, которой так много вокруг нас. И Он мечтал, с помощью своих резонаторов откачивать часть этой энергии для человечества.
Вот господа и все, пока.А теперь давайте помечтаем.Если я прав, энергетическую независимость получит практически каждый человек. Проблем с питанием и обогревом не должно быть.С таким вечным двигателем (ВД) в тундре можно выращивать финиковые пальмы, а на экваторе получать арктический холод, опреснять воду и доставать ее с любой глубины.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «strizhmoscow.ru» — Все об устройство автомобиля. Информационный портал