Бестопливные двигатели: обзор, принцип работы. Двигатель на магнитах. Бестопливный двигатель автотранспортных средств

Было показано, что его попытка создать практически «вечный двигатель» удалась потому, что автор интуитивно понимал, а может прекрасно знал, но тщательно скрывал истину, как правильно надо создать магнит нужной формы и как правильно надо сопоставить магнитные поля магнитов ротора и статора, чтобы взаимодействие между ними привело к практически вечному вращению ротора. Для этого ему пришлось изогнуть роторные магниты так, что этот магнит в разрезе стал похож на бумеранг, слабоизогнутую подкову или банан.

Благодаря такой форме магнитные силовые линии роторного магнита оказались замкнутыми уже не в виде тора, а в виде «бублика», пусть и сплюснутого. И размещение такого магнитного «бублика» так, чтобы его плоскость была при максимальном приближении магнита ротора к магнитам статора приблизительно или преимущественно параллельна силовым линиям, исходящих от магнитов статора, позволило получить за счет эффекта Магнуса для эфирных потоков силу, которая обеспечила безостановочное вращение арматуры вокруг статора...

Конечно было бы лучше, если бы магнитный «бублик» роторного магнита был бы совсем параллельным силовым линиям, исходящих из полюсов магнитов статора, и тогда эффект Мёбиуса для магнитных потоков, которые есть потоки эфира, проявился бы с бОльшим эффектом. Но для того времени (более 30 лет назад) даже такое инженерное решение было огромным достижением, что, несмотря на запрет выдавать патенты на «вечные двигатели», Говарду Джонсону через несколько лет ожидания, патент получить удалось, так как, видимо, ему удалось убедить патентоведов реально действующим образцом своего магнитного мотора и магнитной дорожки. Но даже по прошествии 30 лет кто-то из власть имущих упорно не желает принять решение о массовом применении подобных двигателей в промышленности, в быту, на военных объектах и т.д.

Убедившись, что мотор Говарда Джонсона использует тот принцип, который понят мной, исходя их теории Эфира, я попытался проанализировать с этих же позиций еще один патент, который принадлежит русскому изобретателю Алексеенко Василию Ефимовичу. Патент был выдан еще в 1997 году, но поиск по Интернету показал, что наша власть и промышленники фактически игнорируют изобретение. Видимо в России еще много нефти и денег, поэтому чиновники предпочитают мягко спать и сладко есть, благо у них зарплата это позволяет. А в это время на нашу страну надвигается экономический, политический, экологический и идеологический кризис, которые могут перерасти в продовольственный и энергетические кризисы, а при нежелательном для нас развитии породить демографическую катастрофу. Но, как любили говорить некоторые царские военноначальники - не беда, бабы новых нарожают…

Предоставляю возможность самим читателям познакомиться с патентом Алексеенко В.Е. Он предложил 2 конструкции магнитных двигателей. Их недостатком является то, что их роторные магниты имеют довольно сложную форму. Но патентоведы, вместо того, чтобы помочь автору патента упростить конструкцию, ограничились формальной выдачей патента. Мне неизвестно, как Алексеенко В.Е. обошёл запрет на «вечные двигатели», но и на том спасибо. А вот то, что это изобретение фактически оказалось никому не нужным, это уже очень плохо. Но это, к сожалению, суровая правда бытия нашего народа, которым управляют недостаточно компетентные или слишком корыстные существа. Пока жаренный петух не клюнет…


ИЗОБРЕТЕНИЕ

Патент Российской Федерации RU2131636

БЕСТОПЛИВНЫЙ МАГНИТНЫЙ ДВИГАТЕЛЬ

Электромагнитный двигатель

Альтернативный источник энергии

Стремительный рост цен на ископаемое топливо, заставил весь мир срочно искать альтернативные источники энергии. Уже предлагается масса вариантов замены традиционному способу производства энергии. Однако все они пока уступают хоть и устаревшим, но испытанным видам производства по многим показателям.

Чтобы стать коммерчески выгодным, новый источник энергии должен обладать рядом свойств:

1.Быть достаточно мощным в сравнительно небольших габаритах.

2.Независимым от внешних условий.

3.Непрерывностью работы.

4.Использовать более дешёвое топливо, либо вообще быть без топливным.

В полной мере, таким источником энергии может служить только электромагнитный двигатель, с возбуждением от постоянных магнитов.

Принцип действия данного электромагнитного двигателя основан на законе Ампера для проводника с электротоком в магнитном поле.

Сила, действующая на проводник с электротоком в магнитном поле прямо пропорциональна индукции магнитного поля B, длине проводника L, и силе тока в нём I.

Если принять, силу F за мощность электромагнитного двигателя.

Значение B- за мощность магнитного поля постоянных магнитов, а произведение LI за мощность электромагнитной обмотки, то не сложно заметить, что мощность электромагнитного двигателя с постоянными магнитами может расти только за счёт роста мощности постоянных магнитов. А поскольку - «… постоянный магнит ниоткуда не получает энергию, а его магнитное поле не расходуется, когда им что либо притягиваешь….». «Магнит за три тысячелетия». В.П. Карцев. Стр. 155 , можно утверждать, что при потреблении подобным двигателем электроэнергии мощностью в 1 КВт. Мощность его может составить и 2 и 3 КВт.

Так гласит закон. Более того. Если

2B 2L 2I = 8F

Закон Ампера для проводника с электротоком известен уже давно и не раз проверялся на практике. Пока претензий к нему не было.

Это значит, что используя постоянные магниты в качестве неисчерпаемого источника энергии можно создать электромагнитный двигатель с КПД больше 100 % , о чем долгие годы мечтало всё человечество и с таким упорством отрицали учёные - физики.

Но почему до сих пор такой источник энергии не был создан?

На это есть целый ряд причин:

1. Учёные не могут признать постоянный магнит неисчерпаемым источником энергии. Это, по их мнению, прямое нарушение закона о сохранении энергии. И хотя постоянный магнит существует реально и его магнитное поле действительно не уменьшается при совершении работы, признать этот факт никто не решается.

2. Достаточно сильные постоянные магниты были изобретены сравнительно недавно. А способ концентрации магнитного потока, ещё позже. Но без концентрации источника энергии, электростанция не может получиться достаточно компактной, что является одним из основных условий практичности электростанции.

3. Природа постоянного магнита описана учёными не правильно. В учебниках нам объясняли, что ферромагнетики не могут стать магнитами, поскольку домены, носители магнитного заряда, расположены в ферромагнетиках хаотично. И их поля нивелируют друг друга. (Рис.1.)

Однако это утверждение неверно.

Если взять энное количество прямоугольных магнитов и соединить их разноимёнными полюсами, то в результате получим замкнутый круг. Рис.2

Точно также ведут себя и домены, которые по своей сути являются элементарными магнитами. Рис.3

Причём домены пытаются сжаться в минимальное кольцо, что бы занять наименьшее энергетическое положение.

Магнитная энергия заключена в это кольцо, и наружу вырваться не может. Это явление используют для защиты механических часов от магнитного поля. Механизм элементарно помещают внутрь железного кольца, которое является магнитным проводником, и магнитное поле двигаясь по пути наименьшего сопротивления, обходит механизм часов вокруг не проникая внутрь железного кольца.

Чтобы получить постоянный магнит, необходимо кольца доменов разорвать, сориентировать параллельно и закрепить.

Что бы удостовериться в том, что постоянный магнит обладает энергией достаточно поднести железный предмет к современному магниту из редкоземельных материалов.

Сила, с которой предмет притянется к магниту, развеет все сомнения.

Но энергию постоянного магнита необходимо преобразовать в иную, более привычную и изученную. Например, в механическую.

Это можно сделать лишь, создав электромагнитный двигатель, у которого, за счёт мощных постоянных магнитов, КПД будет значительно превышать 100%.

Конечно, двигатель с КПД больше 100% противоречит закону о сохранении энергии. Но этот закон гласит, что подобное невозможно лишь в замкнутой системе. То есть там, где нет внешнего источника энергии. В данной же конструкции внешним источником энергии служит постоянный магнит.

Если взять постоянный магнит в виде кольца и удалить некоторую часть его, получится подковообразный магнит с двумя полюсами. Между этими полюсами поместить якорь электродвигателя с электропроводящей обмоткой. Обмотка состоит из ряда катушек размеры, которых соответствуют размеру зазора между полюсами. Если по катушке пропустить постоянный электроток, то в катушке возникнет электромагнитное поле, которое заменит недостающее звено постоянного магнита и замкнёт собою кольцо магнитного поля постоянного магнита. А катушка притянется к магниту. Но если направление тока в катушке поменять, то катушка оттолкнётся от магнита.

Разместив на статоре ряд подковообразных магнитов, а на якоре ряд электромагнитных катушек, получим электромагнитный двигатель. Рис.5.

Похожие двигатели широко используются в промышленности. Но не один из них не имеет КПД больше 100%. Почему? Теперь уже дело в неправильной трактовке природы как магнитного и электромагнитного поля, так и электрического тока.

Учёные утверждают, что магнитное поле сплошное. Однако это физически невозможно.

Любая материя состоит из атомов, и даже сами атомы из элементарных частиц. Нет ничего сплошного. Мир вокруг нас дискретный.

Постоянный магнит состоит из доменов. Из групп атомов. По своей сути, это уже кристаллы. А из чего же состоит магнитное поле? Из силовых линий . Их легко обнаружить с помощью листа бумаги и железных опилок. Энергия магнита заключена в силовых линиях. Вся беда в том, что никаких полей не существует. Но учённые верят в поля и совершенно не признают силовые линии. Хотя и пользуются ими для объяснения некоторых физических явлений.

И хотя никто не знает, что такое энергия, и каким образом она держится в силовой линии? Что из себя представляет сама силовая линия, и какова её природа, мы, обязаны использовать это природное явление для своих нужд, оставив поиск ответов будущим поколениям.

Итак, магнитное поле, это пучок силовых линий. Предположительно каждый домен на поверхности магнитного полюса, содержит одну силовую линию. Но силовая линия должна содержать ещё одну характеристику, толщину . Толщина силовой линии зависит от количества доменов выстроенных в один ряд. Словно ручейки воды сливаясь, образуют большую реку. И чем длиннее постоянный магнит, чем толще силовые линии на его полюсах, а значит и магнитное поле на его полюсах.

Но и электромагнитное поле должно иметь подобную природу. Однако доменов там нет.

Отчего же может зависеть количество силовых линий и их толщина в катушке намотанной проводником электрического тока? Наверняка, количество от напряжения, а толщина от силы тока.

Ведь известно, что по тонкому проводнику можно пропустить электроток практически любого напряжения, если сила тока будет мала. Всё просто. Много тонких линий можно разместить в проводнике, а вот много толстых там не помещаются. Отсюда и падение напряжения при протекании через проводник электротока большой силы. Лишние силовые линии просто выталкиваются из проводника.

Итак, выясняется, чтобы замкнуть магнитное кольцо электромагнитной катушкой, требуется подать на катушку электроток высокого напряжения и малой силы.

К сожалению, пока нет методик подсчёта силовых линий постоянного магнита в зависимости от индукции магнитного поля и количество силовых линий электромагнита в зависимости от напряжения электротока протекающего по этой катушке. Поэтому приходится устанавливать величину напряжения индивидуально для каждой конструкции двигателя и подбирать экспериментально.

Наилучшим показателем для двигателя по мощности и экономичности будет момент, когда силовые линии и статора и якоря совпадут как по количеству, так и по толщине. Если силовые линии якоря будут тоньше силовых линий статора, КПД такого двигателя возрастёт, однако мощность уменьшится.

Но из за большой индукции магнитного поля статора, применение классического, железосодержащего якоря невозможно. Якорь просто намагнитится под действием магнитного поля статора в местах против магнитных полюсов до насыщения, и чтобы перемагнитить его потребуется электроток большой мощности. Именно поэтому в классических электродвигателях, магнитное поле статора значительно слабее магнитного поля якоря.

Якорь данного электродвигателя должен быть не только немагнитным, но и диэлектрическим.

Причина этому, большие вихревые токи при движении проводников в сильном магнитном поле. Материалом для якоря может служить текстолит или стеклотекстолит.

Главным, в конструкции данного двигателя является концентрация магнитного потока постоянных магнитов. Для этого, к магнитному полюсу из материала с максимальной степенью магнитного насыщения, например «Пермендюр», присоединяются постоянные магниты с пяти сторон одноимёнными полюсами. Шестая грань обращена к якорю, куда и выходит концентрированный магнитный поток. Рис.6.

Изобретение данного концентратора в основном и способствовало созданию электромагнитного двигателя с КПД больше 100%.Ведь любой энергоноситель необходимо сконцентрировать. Воду в водохранилище с помощью огромной плотины, пар в турбине, повышая температуру и давление, энергию атома, обогащая урановое топливо. Только та энергия которую есть возможность сконцентрировать с большой плотностью в относительно небольших объёмах, способна служить альтернативой классическим видам энергии.

Но магнитное поле увеличивается только за счёт увеличения количества силовых магнитных линий. Поэтому в двигателе площадь магнитных полюсов желательно уменьшить, чтобы напряжение в обмотке якоря было меньше, а количество полюсов можно увеличить. Рис7.

Конечно, при увеличении количества полюсов,потребляемый ток тоже будет расти. Но если двигатель будет потреблять даже 10 КВт. электроэнергии, а его мощность составит 20 КВт. это будет выгодно.

Правда, дешёвым такой двигатель не назовёшь. И редкоземельные магниты, и магнитные полюса из сплава «Пермендюр», достаточно дороги.

Но эти материалы могут служить десятки лет. И обязательно себя окупят. В данном двигателе изнашиваются только подшипники, контактные кольца и щётки контактных колец. Но эти комплектующие сравнительно не дороги и применяются в обычных электродвигателях много лет.

Применение постоянных магнитов в качестве источника энергии ограничивает мощность двигателя. С их помощью и помощью сплава «Пермендюр» возможно получение магнитных полей всего до 2,5 Тл. И совокупную мощность до 100КВт. Но если применить в качестве источника магнитного поля сверхпроводящий магнит, мощность можно резко увеличить и уже говорить о нескольких мегаваттах.

Постоянный магнит, или постоянное магнитное поле сверхпроводящего магнита, уникальный источник энергии. Без топливный, компактный, экологически безвредный. Он отвечает всем требованиям, предъявляемым к источникам энергии как традиционным, так и альтернативным. И достаточно лишь соединить такой двигатель с самым обычным генератором электротока, и добавить пару аккумуляторов, как мы получим автономную электростанцию, которая будет вырабатывать электроэнергию круглосуточно и круглогодично, не взирая ни на погоду, ни на географическое положение.

Конечно, в теории кажется всё очень просто. Сконцентрировали магнитный поток. Замкнули полюса искусственным магнитным полем и всё. Но это в теории. На практике всё гораздо сложнее.

Предположим, каждый домен постоянного магнита содержит одну силовую линию. По крайней мере, это логично. А размер домена всего 4 микрона. Значит, на один квадратный сантиметр магнитного полюса, приходится примерно 25 000 силовых линий. Если предположить, что один вольт напряжения тоже даёт одну силовую линию, то не трудно понять, какое напряжение необходимо подать на одну катушку якоря. Теоретически это конечно возможно, но практически сделать очень сложно. Напряжение необходимо снижать. Либо увеличить размер домена. Теоретически это тоже возможно, но пока никто не пытался это сделать.

Можно также разделить катушку якоря на множество параллельных ветвей.

Профрезеровать в якоре максимально возможное число пазов и одну катушку уложить в один паз. А каждую катушку подключить параллельно. Тогда напряжённость электрических полей будет суммироваться, а не вычитаться как при последовательном подключении.

Но традиционными методами этого сделать не удастся. Альтернативный двигатель требует альтернативных решений.

Есть два решения этой проблемы.

Первый способ решение это создание многофазного ротора. Каждая секция должна быть отдельной фазой. И с помощью электроники подавать на контактные кольца переменное напряжение чередуя фазы. Ничего сложного в этом нет, хотя колец потребуется больше чем привычных три.

Второй способ коллекторный. Но тоже необычный. Коллекторов должно быть два. Один с положительным током, а второй с отрицательным.

В общем, нет ничего невозможного. Просто необходимо это делать на высоком профессиональном уровне. Конечно, сложно. Но ведь не сложнее термоядерной энергетики. Но зато безопасно и значительно дешевле.

Имя заявителя:
Имя изобретателя: Бароев Т.Р.; Бароев О.Т.; Бароев Р.Т.
Имя патентообладателя: Горский государственный аграрный университет
Адрес для переписки: 362040, РСО, Владикавказ, ул.Кирова 37, ГГАУ, патентный отдел
Дата начала действия патента: 1995.11.24Ноу-хау разработки, а именно данное изобретение автора относится к области машиностроения, в частности к конструкции двигателей автотранспортных средств. Техническим результатом является повышение эффективности использования автотранспортных средств. Бестопливный двигатель содержит генератор, с которого подается определенная частота тока в колебательный контур, в состав которого входят катушка индуктивности, два конденсатора переменной емкости, которые служат для регулирования частоты колебания тока в колебательном контуре, подаваемого на соленоид, внутри которого находится ферромагнитный поршень, который совершает возвратно-поступательные движения под действием магнитострикционного эффекта.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Ноу-хау разработки, а именно данное изобретение автора относится к области машиностроения, в частности к конструкциям двигателей автотранспортных средств. Известны конструкции двигателей внутреннего сгорания автомашин ("Москвич", "Жигули", "Волга", а также автобусы, грузовые машины, тракторы, комбайны всех видов и марок) , предназначенные для их механического движения, в результате чего они развивают определенную мощность, совершают работу, приобретают различные скорости относительно неподвижных тел, т.е. относительно инерциальных систем отчета. Наиболее близким по технической сущности к заявляемому устройству является выбранное в качестве прототипа по заявке Франции N 2390040 A, H 02 N, 1978. Недостатком известного устройства является неэффективная конструкция двигателя. Задачей изобретения является повышение эффективности использования бестопливного двигателя под действием магнитострикционного эффекта. Поставленная задача достигается тем , что предлагается бестопливный двигатель автотранспортных средств, содержащий корпус. кривошипно-шатунный механизм, коленчатый вал, трансмиссионное устройство, генератор, поршень, установленный с возможностью возвратно-поступательного движения, причем генератор размещен с возможностью передачи определенной частоты тока в колебательный контур, в состав которого входит катушка индуктивности, два конденсатора переменной емкости, которые служат для регулирования частоты колебания тока, подаваемого на соленоид, поршень выполнен ферромагнитным и размещен внутри соленоида с возможностью возвратно-поступательного движения под действием магнитострикционного эффекта.Транспорт будет расходовать в несколько десятков раз меньше энергии на перевозку одного пассажира или единицы массы груза, чем привычные нам транспортные средства за счет повышения КПД с 30 до 95% . Нетрудно подсчитать, какой экономический эффект даст использование такого транспорта на сотнях тысяч километров, даже несмотря на большие начальные затраты. Вначале придется преодолеть много трудностей как технических, так и психологических.Таким образом сравнение заявляемого решения не только с прототипом, но и с другими техническими решениями в данной области техники позволяет сделать вывод о соответствии критерию изобретения "новизна" и "существенные отличия".

На фиг. 1 представлена блок-схема бестопливного двигателя автотранспортных средств.

Бестопливный двигатель автотранспортных средств содержит генератор переменного тока 1, катушку индуктивности 2, конденсаторы переменной емкости 3, соленоид 4, ферромагнитный поршень 5, изготовленный из железоалюминиевого сплава.

ПРЕДЛАГАЕМЫЙ ДВИГАТЕЛЬ РАБОТАЕТ СЛЕДУЮЩИМ ОБРАЗОМ

Генератор переменного тока 1 вырабатывает ток определенной частоты. Эта частота подается на колебательный контур, состоящий из катушки индуктивности 2 и двух конденсаторов 3 переменной емкости. В колебательном контуре путем измерения емкости конденсаторов 3 можно регулировать в больших пределах частоту тока, подаваемого с генератора переменного тока 1. Затем высокая частота тока с колебательного контура подается на соленоид 4. В соленоиде 4 возникает переменное магнитное поле в соответствии с частотой тока, подаваемого с колебательного контура. Внутри соленоида 4 находится ферромагнитный поршень, который на основании магнитострикционного эффекта совершает возвратно-поступательные движения, подобно возвратно-поступательным движениям поршня в цилиндре двигателей внутреннего сгорания.Возвратно-поступательные движения ферромагнитного поршня 5, с помощью кривошипно-шатунного механизма, коленчатого вала и трансмиссионного устройства передаются колесом (на чертежах не указаны, так как это известные устройства в двигателях внутреннего сгорания), благодаря чему автотранспортные средства приобретают определенные скорости относительно инерционных систем отсчета.
Так как бестопливные двигатели автотранспортных средств, так же, как и двигатели внутреннего сгорания, являются и двухцилиндровыми, четырехцилиндровыми шестицилиндровыми, восьмицилиндровыми, десятицилиндровыми, двенадцатицилиндровыми, то есть многоцилидровыми, то параллельно соленоиду 4 с ферромагнитным поршнем 5 подсоединяют соответствующее количество соленоидов с ферромагнитными поршнями (см. фиг. 2 (а, б) ). На фиг. 2 (а, б) показаны многоцилиндровые бестопливные двигатели автотранспортных средств, где 6 - ферромагнитные поршни. Все соленоиды с ферромагнитными поршнями могут быть подсоединены к одному колебательному контуру с одним генератором переменного тока. Или по необходимости каждый соленоид с ферромагнитным поршнем может иметь попарно или отдельно свой колебательный контур. В зависимости от мощности бестопливного двигателя количество катушек индуктивности и количества конденсаторов в колебательном контуре будет различным. Кроме того, в зависимости от вида и мощности автотранспортных средств размеры соленоида и ферромагнитного поршня также будет различными. Причем в зависимости от вида, типа и конструкций бестопливных двигателей автотранспортных средств, ферромагнитные поршни в многоцилиндровых двигателях могут иметь или один соленоид, или попарно один соленоид, или каждый ферромагнитный поршень свой собственный соленоид. Кроме того, могут иметь один или несколько колебательных контуров с различным количеством катушек индуктивности и конденсаторов переменной и постоянной емкости.
Использование предлагаемого устройства обеспечивает по сравнению с существующими двигателями следующие преимущества:
    имеет большой КПД (90...95%) ; радикально преобразуется техника машиностроения, а это дает громадный экономический эффект, исчисляемый сотнями миллиардов рублей; существенно увеличиватся скорость движения автотранспортных средств, что даст большую экономию времени и уменьшит транспортные расходы; транспорт будет расходовать в несколько десятков раз меньше энергии, что даст большой экономический эффект на сотнях тысяч километров.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Бестопливный двигатель автотранспортных средств, содержащий корпус, кривошипно-шатунный механизм, коленчатый вал, трансмиссионное устройство, генератор, поршень, установленный с возможностью возвратно-поступательного движения, отличающийся тем, что генератор размещен с возможностью передачи определенной частоты тока в колебательный контур, в состав которого входят катушка индуктивности, два конденсатора переменной емкости, которые служат для регулирования частоты колебания тока, подаваемого на соленоид, поршень выполнен ферромагнитным и размещен внутри соленоида с возможностью возвратно-поступательного движения под действием магнитострикционного эффекта.

Разместил статью:

Разработаны двигатели и генераторы, производящие избыточную мощность. Т.е. на единицу потребляемой мощности, они вырабатывают во много раз большую мощность. Избыток мощности отбирается от окружающего пространства и выдается потребителю. Даные устройства очень просты по конструкции,не требуют дорогих материалов и специальных технологий. Изготовление может быть налажено на любом электромашиностроительном предприятии. Лучше других конструкций,был исследован электродвигатель. Испытание макета двигателя полностью подтвердило теорию. Выходная, механическая мощность, в три раза превысила, потребляемую электрическую.

Для эксперимента был изготовлен один из самых простых и неэффективных вариантов двигателя. Данный двигатель разместили на одной раме с автомобильным генератором от автомобиля Жигули, соединив клиноременной передачей их шкивы. Двигатель питался от сети 220 вольт. Для управления двигателем был использован механический коммутатор, а не электронный, что также значительно снизило эффективность его работы. В качестве нагрузки генератора использовались автомобильные лампы. При этом потребляемая двигателем мощность составила 140 ватт. Измерив мощность на выходе генератора на лампочках, получили 160 ватт электрической мощности. Известно, что автомобильные генераторы имеют КПД, не превышающий 60%, поэтому механическая мощность на валу двигателя была значительно выше, чем электрическая на выходе генератора.

К сожалению, не было возможности достать генератор переменного тока на 220 вольт необходимой мощности и проверить устройство в режиме самозапитки. А от того генератора, что использовался, это было невозможно. Но и в этом виде, испытания показали, что возможно получение большей механической мощности, чем затрачено электрической. Механический коммутатор не позволил работать в нужном алгоритме подачи напряжения на обмотки. Поэтому двигатель потреблял гораздо большую электрическую мощность, чем было необходимо. И в конце концов сгорел при испытаниях. Тем более, изготовлен был со значительным отступлением от авторского проекта. Используя электронный Блок Управления двигателем, можно значительно улучшить параметры. Исследования на другом макете показало, что реально достичь отношения входная электрическая/выходная механическая мощность 1/20, а немного усложнив конструкцию, показатели можно улучшить в несколько раз.

Сейчас разработан источник энергии для электромобиля,позволяющий без всяких аккумуляторов ездить пока не износится сама конструкция. Источник гораздо компактнее,легче,дешевле аккумуляторов. Срок службы может быть десятки лет.

Бестопливный двигатель

С каждым днем все больше людей во всем мире задумываются о возможности получения свободной энергии. Сегодня доступным способом получения такой энергии является альтернативная энергетика. Альтернативные источники энергии преобразуют природную энергию в нужную нам электрическую и тепловую. Но главным их недостатком является зависимость от погодных условий. Данного недостатка и некоторых других лишен изобретенный безтопливный двигатель Москвина.

Безтопливный двигатель Москвина - механическое устройство, преобразующее потенциальную энергию наружней консервативной силы, в кинетическую энергию вращения рабочего вала без потребления какого-либо вида топлива и электроэнергии. Безтопливный двигатель - своего рода вечный двигатель, работающий бесконечно долго, пока к рычагам приложено усилие и детали не изношены с непрерывным преобразованием свободной энергии. Свободная энергия, получаемая в процессе работы бестопливного двигателя, полность бесплатна, а потребление бесплатной электроэнергии от бестопливного генератора, при подключении к двигателю обычного электрогенератра, будет абсолютно законно.

Безтопливный двигатель - это экологически чистый универсальный привод для различных устройств и механизмов, работающий без вредных выбросов в атмосферу с сохранением окружающей среды.

Безтопливный генератор - основное устройство, которое стало возможным благодаря бестопливному двигателю. Безтопливный генератор электроэнерги - это возможность производить автономные бестопливные электростанции различной мощности!

В настоящее время изобретение находится на стадии экспертизы по существу, и в отличии от многочисленных аналогичных запатентованых изобретений, работоспособность которых не была проверена по различным причинам и находится под сомнением, данный безтопливный двигатель уже имеет рабочий образец. практически подтверждающий реальность получения свободной энергии.

Бестопливный двигатель Москвина

1. Бестопливный двигатель, преобразующий потенциальную энергию наружной консервативной силы в кинетическую энергию вращения рабочего вала, состоящий из корпуса, ротора, рабочего вала, шарнирно закрепленного в корпусе, отличающийся тем, что для преобразования потенциальной энергии от наружной консервативной силы, приложенной, по меньшей мере, к одному входному механизму, соединенному с пустотелым валом, соосным с рабочим валом и шарнирно закрепленным на нем, применена механическая передача, обеспечивающая необходимую разность скоростей вращения рабочего и пустотелого валов и передачу крутящего момента, по меньшей мере, на один шарнирно закрепленный в маховиках ротора вал с зубчатым колесом, зубчатое колесо которого, находясь в зацеплении с зубчатым венцом, расположенным по всему диаметру в корпусе двигателя, возможно приведет во вращение ротор с рабочим валом в направлении, обратном вращению пустотелого вала.

2. Бестопливный двигатель по п.1, отличающийся тем, что механическая передача представляет собой цепную передачу от большой звездочки, закрепленной на пустотелом валу к малой звездочке, закрепленной на валу с зубчатым колесом.

3. Бестопливный двигатель по п.1, отличающийся тем, что механическая передача представляет собой ременную передачу от большого шкива, закрепленного на пустотелом валу к малому шкиву, закрепленному на валу с зубчатым колесом.

4. Бестопливный двигатель по п.1, отличающийся тем, что механическая передача представляет собой зубчатую передачу от большой шестерни, закрепленной на пустотелом валу, через промежуточную шестерню, закрепленную шарнирно на маховике ротора, к малой шестерне, закрепленной на валу с зубчатым колесом.

5. Бестопливный двигатель по п.1, отличающийся тем, что входной механизм представляет собой рычаг, соединенный с пустотелым валом и имеющий выход через окно в корпусе наружу.

Ученые: бестопливный двигатель невозможен

Новая разработка получила название EmDrive и обещала революционные перспективы. Создатели даже заявили о некоторых успехах на раннем этапе тестирования. Впрочем, скептиков в научной среде тоже хватает, и они решили выразить свои мысли на этот счет. Среди противников EmDrive оказался физик и математик Фил Плейт из Калифорнийского университета.

По мнению ученых, концепция бестопливного двигателя противоречит простым физическим законам. Пока создается тяга внутри двигателя, должен соблюдаться некий баланс сил внутри него, а по закону сохранения импульса это невозможно. «Нам придется свергнуть закон сохранения импульса, дабы говорить о чем-то подобном» - отмечает Фил Плейт. Иными словами, чтобы построить бестопливный двигатель, потребуется совершить некий прорыв в фундаментальной науке, а современные технологии не позволяют рассматривать EmDrive всерьез.

Косвенно на все это указывает и положение дел вокруг EmDrive. Рабочего образца двигателя пока что не существует, а характеристики экспериментального устройства ни о чем не говорят. Замеры показали тягу примерно в 16 миллиньютонов. Впоследствии этот показатель вырос до 50 миллиньютонов.

Напомним, что экспериментальная модель бестопливного двигателя EmDrive была представлена еще в 2003 году - разработчиком стал британец Роджер Шоер. Электричество, нужное для создания микроволн, добывается посредством солнечной энергии. Таким образом, ученые вновь дали повод говорить про вечный двигатель.

В NASA разработку своих коллег оценили неоднозначно. Была отмечена уникальность конструкции двигателя. При этом специалисты утверждают, что добиться результатов можно лишь в условиях квантового вакуума.

БЕСТОПЛИВНЫЙ ДВИГАТЕЛЬ

Патент на безтопливный двигатель выдан Василию Алексеенко, русскому Левше, 10 июня 1999 года Российским агентством по патентам и товарным знакам. Двигатель не требует вообще никакого топлива: ни нефти, запасы которой ограничены, ни газа - ничего, что мы называем сырьем. Работает уникальный двигатель от энергии магнитных полей постоянных магнитов. Если один килограмм обычного магнита может притянуть или оттолкнуть 50 или 100 кг. массы, то мощные оксидно-бариевые способны то же самое проделывать с пятью тысячами килограммов массы. Такие мощные магниты, как уточняет изобретатель, не нужны. Годятся самые известные: один к пятидесяти или один к ста. С их помощью можно получить в двигателе, который сотворил русский Левша, 20 тысяч оборотов в минуту. Мощность придется даже гасить, используя передающее устройство. Постоянные магниты, от энергии которых работает двигатель, на нем и расположены Ротор своим магнитным полем отталкивается от такого же поля статора и начинает вращаться, а магнитное поле статора следует за ним и как бы его подгоняет, ускоряя вращение. Так можно добиться чудовищной мощности. Если такой двигатель использовать, скажем, в стиральной машине, вращение обеспечат крохотные магнитики.

Русский изобретатель из Перми А. Бакаев создал приставку к автодвигателям, которая позволяет автомобилям ездить на воде без каких-либо углеводородных добавок к ней. И это не фантастический проект. Он уже внедряется. Приставками оснащены уже более 3-х тысяч автомобилей, курсирующих по дорогам России. Это в буквальном смысле подарок автолюбителям. Использование приставок избавляет автомобилистов от затрат на бензин, а атмосферу - от вредных выбросов. Чтобы создать такую приставку, А. Бакаев сначала открыл новый тип расщепления, использовав его в своем уникальном изобретении.Другой русский ученый XX века, Б. Болотов, создал автодвигатель, которому нужна чуть ли не капля бензина, и то для первоначальной раскрутки. Двигателю, который он изобрел, не нужны ни коленчатый вал, ни цилиндры, ни вообще трущиеся детали. Их заменяют два диска на подшипниках с небольшим зазором между ними. В качестве топлива работает воздух, который на огромных оборотах разделяется на кислород и азот. При 90° градусах азот сгорает в кислороде, в результате чего двигатель массой 8 кг развивает мощность в 300 лошадиных сил.Помимо безтопливного двигателя Василия Алексеенко, русские изобретатели предложили еще несколько конструкций безтопливных двигателей. Они работают на принципиально новых источниках энергии: на энергии вакуума и других.

Источники: www.susam.ru, energetiku.jimdo.com, bankpatentov.ru, naked-science.ru, maksonovosti.livejournal.com

Война богов и людей

Много веков жизнь продолжалась согласно установленному порядку. Но однажды произошла война богов и людей. Этому предшествовал мятеж...

Практически все в нашей жизни зависит от электричества, но существуют определенные технологии, которые позволяют избавиться от локальной проводной энергии. Предлагаем рассмотреть, как сделать магнитный двигатель своими руками, его принцип работы, схема и устройство.

Типы и принципы работы

Существует понятие вечных двигателей первого порядка и второго. Первый порядок – это устройства, которые производят энергию сами по себе, из воздуха, второй тип – это двигатели, которым необходимо получать энергию, это может быть ветер, солнечные лучи, вода и т.д., и уже её они преобразовывают в электричество. Согласно первому началу термодинамики, обе эти теории невозможны, но с таким утверждением не согласны многие ученые, которые и начали разработку вечных двигателей второго порядка, работающих на энергии магнитного поля.

Фото – Магнитный двигатель дудышева

Над разработкой «вечного двигателя» трудилось огромное количество ученых во все времена, наиболее большой вклад в развитие теории о магнитном двигателе сделали Никола Тесла, Николай Лазарев, Василий Шкондин, также хорошо известны варианты Лоренца, Говарда Джонсона, Минато и Перендева.


Фото – Магнитный двигатель Лоренца

У каждого из них своя технология, но все они основаны на магнитном поле, которое образовывается вокруг источника. Стоит отметить, что «вечных» двигателей не существует в принципе, т.к. магниты теряют свои способности приблизительно через 300-400 лет.

Самым простым считается самодельный антигравитационный магнитный двигатель Лоренца . Он работает за счет двух разнозаряженных дисков, которые подключаются к источнику питания. Диски наполовину помещаются в полусферический магнитный экран, поле чего их начинают аккуратно вращать. Такой сверхпроводник очень легко выталкивает из себя МП.

Простейший асинхронный электромагнитный двигатель Тесла основан на принципе вращающегося магнитного поля, и способен производить электричество из его энергии. Изолированная металлическая пластина помещается как можно выше над уровнем земли. Другая металлическая пластина помещается в землю. Провод пропускается через металлическую пластину, с одной стороны конденсатора и следующий проводник идет от основания пластины к другой стороне конденсатора. Противоположный полюс конденсатора, будучи подключенным к массе, используется как резервуар для хранения отрицательных зарядов энергии.

Фото – Магнитный двигатель Тесла

Роторный кольцар Лазарева пока что считается единственным работающим ВД2, кроме того, он прост в воспроизведении, его можно собрать своими руками в домашних условиях, имея в пользовании подручные средства. На фото показана схема простого кольцевого двигателя Лазарева:

Фото – Кольцар Лазарева

На схеме видно, что емкость поделена на две части специальной пористой перегородкой, сам Лазарев применял для этого керамический диск. В этот диск установлена трубка, а емкость заполнена жидкостью. Вы для эксперимента можете налить даже простую воду, но желательно применять улетучивающийся раствор, к примеру, бензин.

Работа осуществляется следующим образом: при помощи перегородки, раствор попадает в нижнюю часть емкости, а из-за давления по трубке перемещается наверх. Это пока что только вечное движение, не зависящее от внешних факторов. Для того чтобы соорудить вечный двигатель, нужно под капающей жидкостью расположить колесико. На основе этой технологии и был создан самый простой самовращающийся магнитный электродвигатель постоянного движения, патент зарегистрирован на одну российскую компанию. Нужно под капельницу установить колесико с лопастями, а непосредственно на них разместить магниты. Из-за образовавшегося магнитного поля, колесо начнет вращаться быстрее, быстрее перекачиваться вода и образуется постоянное магнитное поле.

Линейный двигатель Шкондина произвел своего рода революцию в прогрессе. Это устройство очень простой конструкции, но в тоже время невероятно мощное и производительное. Его двигатель называется колесо в колесе, и в основном его используют в современной транспортной отрасли. Согласно отзывам, мотоцикл с мотором Шкондина может проехать 100 километров на паре литров бензина. Магнитная система работает на полное отталкивание. В системе колеса в колесе, есть парные катушки, внутри которых последовательно соединены еще одни катушки, они образовывают двойную пару, у которой разные магнитные поля, за счет чего они двигаются в разные стороны и контрольный клапан. Автономный мотор можно устанавливать на автомобиль, никого не удивит бестопливный мотоцикл на магнитном двигателе, устройства с такой катушкой часто используются для велосипеда или инвалидной коляски. Купить готовый аппарат можно в интернете за 15000 рублей (производство Китай), особенно популярен пускатель V-Gate.


Фото – Двигатель Шкондина

Альтернативный двигатель Перендева – это устройство, которое работает исключительно благодаря магнитам. Используется два круга – статичный и динамичный, на каждом из них в равной последовательности, располагаются магниты. За счет самооталкивающейся свободной силы, внутренний круг вращается бесконечно. Эта система получила широкое применение в обеспечении независимой энергии в домашнем хозяйстве и производстве.


Фото – Двигатель Перендева

Все перечисленные выше изобретения находятся в стадии развития, современные ученые продолжают их совершенствовать и искать идеальный вариант для разработки вечного двигателя второго порядка.

Помимо перечисленных устройств, также популярностью у современных исследователей пользуется вихревой двигатель Алексеенко, аппараты Баумана, Дудышева и Стирлинга.

Как собрать двигатель самостоятельно

Самоделки пользуются огромным спросом на любом форуме электриков, поэтому давайте рассмотрим, как можно собрать дома магнитный двигатель-генератор. Приспособление, которое мы предлагаем сконструировать, состоит из 3 соединенных между собой валов, они скреплены таким образом, что вал в центре повернут прямо к двум боковым. К середине центрального вала прикреплен диск из люцита диаметров четыре дюйма, толщиной в половину дюйма. Внешние валы также оснащены дисками диаметром два дюйма. На них расположены небольшие магниты, восемь штук на большом диске и по четыре на маленьких.


Фото – Магнитный двигатель на подвеске

Ось, на которых расположены отдельные магниты, находится в параллельной валам плоскости. Они установлены таким образом, что концы проходят возле колес с проблеском в минуту. Если эти колеса двигать рукой, то концы магнитной оси будут синхронизироваться. Для ускорения рекомендуется установить алюминиевый брусок в основание системы так, чтобы его конец немного касался магнитных деталей. После таких манипуляций, конструкция должна начать вращаться со скоростью пол оборота в одну секунду.

Приводы установлены специальным образом, при помощи которого валы вращаются аналогично друг другу. Естественно, если воздействовать на систему сторонним предметом, к примеру, пальцем, то она остановится. Этот вечный магнитный двигатель изобрел Бауман, но ему не удалось получить патент, т.к. на тот момент устройство отнесли к разряду непатентуемых ВД.

Для разработки современного варианта такого двигателя многое сделали Черняев и Емельянчиков.


Фото – Принцип работы магнита

Какие достоинства и недостатки имеют реально работающие магнитные двигатели

Достоинства:

  1. Полная автономия, экономия топлива, возможность из подручных средств организовать двигатель в любом нужном месте;
  2. Мощный прибор на неодимовых магнитах способен обеспечивать энергией жилое помещение до 10 вКт и выше;
  3. Гравитационный двигатель способен работать до полного износа и даже на последней стали работы выдавать максимальное количество энергии.

Недостатки:

  1. Магнитное поле может негативно влиять на здоровье человека, особенно этому фактору подвержен космический (реактивный) движок;
  2. Несмотря на положительные результаты опытов, большинство моделей не способны работать в нормальных условиях;
  3. Даже после приобретения готового мотора, его бывает очень сложно подключить;
  4. Если Вы решите купить магнитный импульсный или поршневой двигатель, то будьте готовы к тому, что его цена будет сильно завышена.

Работа магнитного двигателя – это чистая правда и она реально, главное правильно рассчитать мощность магнитов.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «strizhmoscow.ru» — Все об устройство автомобиля. Информационный портал