Современные системы автомобилей обеспечивающих безопасность. Системы пассивной безопасности

Доброго дня всем добрым людям. Сегодня в статье мы подробно осветим современные системы безопасности автомобиля. Вопрос актуальный для всех без исключения водителей и пассажиров.

Высокие скорости, маневрирование, обгоны помноженные на невнимательность и лихачество представляют серьёзную угрозу для других участников движения. Согласно данным Pulitzer Center за 2015 год аварии с участием автомобилей унесли жизни 1 миллиона 240 тысяч человек.

За сухими цифрами стоят человеческие судьбы и трагедии множества семей, которые не дождались домой отцов, матерей, братьев, сестёр, жён и мужей.

Например, в Российской Федерации приходиться на 100 тысяч населения 18,9 смертельных случаев. На долю автомобилей выпадает 57,3% смертельных аварий.

На дорогах Украины зарегистрировано 13,5 смертельных случаев на 100 тысяч населения. На долю автомобилей приходится 40,3% от общего количества смертельных ДТП.

В Беларуси зарегистрировано 13,7 смертельных случаев на 100 тысяч населения и 49,2% приходиться на автомобили.

Специалисты в сфере дорожной безопасности делают неутешительные прогнозы свидетельствующие, что количество погибших на дорогах мира возрастёт до 3,6 миллионов человек к 2030 году. Фактически через 14 лет будет погибать в 3 раза больше людей, чем в настоящее время.

Современные системы безопасности автомобиля созданы и нацелены на сохранения жизни и здоровья водителю и пассажирам транспортного средства даже при серьёзном дорожно-транспортном происшествии.

В статье мы подробно осветим современные системы активной и пассивной безопасности автомобилей. Постараемся дать ответы на интересующие читателей вопросы.

Главная задача систем пассивной безопасности автомобиля заключается в уменьшении тяжести последствий аварии (столкновение или опрокидывание) для здоровья человека если ДТП произошло.

Работа пассивных систем начинается в момент наступления ДТП и продолжается до полной неподвижности транспортного средства. Водитель уже не может повлиять на скорость, характер движения или выполнить манёвр во избежание аварии.

1.Ремень безопасности

Один из главных элементов современной системы безопасности машины. Считается простым и эффективным. В момент ДТП прочно удерживают и фиксируют в неподвижном состоянии тело водителя и пассажиров.

Для современных автомобилей обязательно наличие ремней безопасности. Выполнены из прочного на разрыв материала. Многие машины оснащены системой раздражающего звукового сигнала, напоминающего о необходимости использования ремней безопасности.

2.Подушка безопасности

Один из основных элементов пассивной системы безопасности. Представляет собой прочный матерчатый мешок, похожий по форме подушку, который в момент столкновения автомобиля наполняется газом.

Предотвращают повреждение головы и лица человека о твёрдые части салона. В современных автомобилях может находиться от 4 до 8 подушек безопасности.

3.Подголовник

Установлен в верхней части автомобильного сиденья. Его можно регулировать по высоте и углу наклона. Служит для фиксации шейного отдела позвоночника. Защищает его от повреждения при отдельных видах ДТП.

4.Бампер

Задний и передний бамперы выполнены из прочного пластика, обладающего пружинящим эффектом. Доказали свою эффективность при мелких дорожно-транспортных происшествиях.

Принимают на себя удар и предотвращают повреждения металлических элементов кузова. При ДТП на высокой скорости в некоторой степени поглощают энергию удара.

5.Стёкла триплекс

Автомобильные стёкла специальной конструкции защищающие открытые участки кожи и глаз человека от повреждения в результате их механического разрушения.

Нарушение целостности стекла не приводит к появлению острых и режущих осколков, способных нанести серьёзные повреждения.

На поверхности стекла появляется множество мелких трещин, представленных огромным количеством мелких осколков не способных причинить вреда.

6.Салазки для мотора

Мотор современной машины монтируется на специальной рычажной подвеске. В момент столкновения и особенно лобового, двигатель не уходит в ноги водителя, а по направляющим салазкам смещается вниз под днище.

7.Детские автокресла

Защищают ребёнка в случае столкновения или опрокидывания автомобиля от получения серьёзных увечий или повреждений. Надёжно фиксируют его в кресле, которое в свою очередь удерживают ремни безопасности.

Современные системы активной безопасности автомобиля

Активные системы безопасности автомобиля нацелены на предотвращение аварийных ситуаций и недопущения ДТП. Электронный блок управления автомобилем отвечает за контроль систем активной безопасности в режиме реального времени.

Нужно помнить, что не стоит всецело полагаться на активные системы безопасности, ведь они не могут заменить собой водителя. Внимательность и собранность за рулём являются гарантией безопасного вождения.

1.Антиблокировочная система или ABS

Колёса автомобиля при резком торможении и высокой скорости движения могут заблокироваться. Управляемость стремиться к нулю и резко возрастает вероятность аварии.

Антиблокировочная система принудительно разблокирует колёса и возвращает управляемость машиной. Характерным признаком работы ABS является биение педали тормоза. Для повышения эффективности работы антиблокировочной системы при торможении следует с максимальным усилием выжимать педаль тормоза.

2.Антипробуксовочная система или ASC

Система позволяет избежать пробуксовки и облегчает подъём в гору на скользком дорожном покрытии.

3.Система курсовой устойчивости или ESP

Система нацелена на обеспечение устойчивости автомобиля при движении по дороге. Эффективна и надёжна в работе.

4.Система распределения тормозных усилий или EBD

Позволяет предотвратить занос машины при торможении за счёт равномерного распределения тормозного усилия между передними и задними колёсами.

5.Блокировка дифференциала

Дифференциал передаёт крутящийся момент от коробки передач на ведущие колёса. Блокировка позволяет обеспечить равномерную передачу усилия, даже если одно из ведущих колёс обладает недостаточным сцеплением с дорожным покрытием.

6.Система помощи при подъёме и спуске

Обеспечивает поддержание оптимальной скорости движения при спуске или подъёме на гору. При необходимости подтормаживает одним или несколькими колёсами.

7.Парктроник

Система, упрощающая парковку автомобиля и снижающая риск столкновения с другими транспортными средствами при маневрировании на стоянке. На специальном электронном табло указывается расстояние до препятствия.

8.Превентивная система экстренного торможения

Способна работать при скорости свыше 30 км/час. Электронная система в автоматическом режиме отслеживает расстояние между автомобилями. При резкой остановке едущего впереди транспорта и отсутствии реакции со стороны водителя, система в автоматическом режиме замедляет машину.

Современные производители автомобилей уделяют много внимания системам активной и пассивной безопасности. Постоянно работают над их совершенствованием и надёжностью.

В таком сложном агрегате как автомобиль, очень легко позабыть об одной из самых основных систем - системе защиты и безопасности. И если активная безопасность всегда подробно освещается как СМИ, так и самими дилерами или продавцами, то пассивная безопасность – не что иное как серая мышка внутри сложной конструкции транспортного средства.

Что такое пассивная безопасность автомобиля

Пассивная безопасность – это набор свойств и приспособлений транспортного средства, которые имеют свои уникальные конструктивные и эксплуатационные отличия, однако функционально направлены на обеспечение максимально безопасных условий при попадании в аварию. В отличии от активной системы безопасности, действие которой направлены на сохранение автомобиля от аварий, система пассивной безопасности автомобиля активизируется уже после того как авария имело место быть.

Постоянные испытания во время краш-тестов позволяют найти и проанализировать самые незащищенные участки в автомобиле.

Для того, чтобы снизить последствия аварии применяется целая совокупность из устройств, цель которых снизить тяжесть возникшего ДТП. Для более точной классификации используют разделение на две основные группы:

Внутренняя система – в её состав входят:

  1. Подушки безопасности
  2. Ремни безопасности
  3. Конструкция сидений (подголовники, подлокотники, и т.д.)
  4. Энергопоглотители кузова
  5. Другие мягкие элементы интерьера

Внешняя система –еще одна, не менее важная группа, представляется в виде:

  1. Бамперов
  2. Выступов на кузове
  3. Стекол
  4. Усилителей стоек

С недавнего времени, на страницах известных информационных агентств начали подробно освещать пункты, которые сообщают о всех элементах пассивной безопасности в авто. Кроме того, не стоит забывать и деятельности независимой организации Euro NCAP (European New Car Assessment Programme). Этот комитет уже довольно долгое время проводит краш-тесты всех выходящих на рынок моделей, присуждая ведомости о результатах проверки как активной системы безопасности так и пассивной. С данными по результатам краш-тестов может ознакомится любой желающий, удостоверившись в каждой из составляющих системы защиты.

Изображение демонстрирует как гармонично работают все системы пассивной безопасности во время аварийной ситуации (ремни безопасности, подушки безопасности, сиденье с подголовником).

Внутренняя пассивная безопасность

Все элементы пассивной безопасности входящие в этот список призваны обезопасить всех находящихся в салоне автомобиля, который попал в аварию. Именно поэтому, очень важно помимо оснащения автомобиля специальным оборудованием (исправного вида), его необходимо использовать всеми участниками езды по назначению. Только соблюдение всех правил позволит получить наивысшую защиту. Далее мы рассмотрим самые основные пункты, которые входят в перечень внутренней пассивной безопасности.

  1. Кузов – основа всей системы безопасности. Прочность автомобиля и возможные деформации его частей напрямую зависят от материала, состояния, а также конструктивных особенностей кузова автомобиля. Чтобы обезопасить пассажиров от попадания подкапотного содержимого в салон, конструкторы специально используют «решетку безопасности» - прочный пласт, который не позволяет нарушить салонную основу.
  2. Безопасность салона от элементов конструкции – это целый перечень устройств и технологий, которые призваны обезопасить здоровье водителя и пассажиров. Например, многие салоны предусматривают наличие складывающегося руля, который не позволяет нанести дополнительный урон водителю. Кроме того, современные автомобили оснащены травмобезопасным педальным узлом, действие которого предусматривает отсоединение педалей от креплений, снижая нагрузку на нижние конечности.

Чтобы рассчитывать на максимальную безопасность во время использование подголовника, необходимо очень четко установить его положение на определенную высоту, подходящую именно вам.

  1. Ремни безопасности – от принятого стандарта поясных 2-х точечных ремней, которые удерживали пассажира обычной стяжкой через живот или грудь, отказались еще в середине прошлого века. Подобные пассивные средства безопасности требовали улучшений, которые пришли в виде многоточёчных ремней. Повышенная функциональность такого типа устройств позволяла равномерно распределить кинетику по всему телу, не подвергая травматизации отдельных областей тела.
  2. Подушки безопасности – вторая по важности (первую строчку здесь уверенно удерживают пояса безопасности), пассивная система безопасности. Получив признание в конце 70-ых гг. они плотно вошли в состав всех транспортных средств. Современный автопром начали оснащать целым набором из систем подушек безопасности, которые окружают водителя и пассажиров со всех сторон, перекрывая потенциальные зоны повреждений. Резкое раскрывание камеры с хранением подушки активирует стремительное наполнение последней воздушной смесью, которая амортизирует приближающегося по инерции человека.
  3. Сиденья и подголовники – само по себе сиденье не представляет дополнительных функций во время аварии, кроме как выполнение фиксации пассажира на месте. Однако подголовники, напротив, свой функционал раскрывают как раз в момент столкновения, предотвращая запрокидывание головы с последующей травматизацией шейных позвонков.
  4. Другие средства внутренней пассивной безопасности – во многих автомобилях предусмотрено наличие высоконапряженных листов из металла. Такой апгрейд позволяет сделать автомобиль более жестким к ударам, одновременно снижая его массу. Во многих автомобилях также используется активная система областей разрушения, которые при столкновении гасят возникающую кинетику, а сами при этом разрушаются (повышенные деструкции автомобиля ничто в сравнении с жизнью и здоровьем человека).

На примере каркаса небольшого кузова Smart автомобиля, можно убедиться, как пассивная безопасность играет основополагающую роль еще на стадии проектирования будущего автомобиля.

Внешняя пассивная безопасность

Если в предыдущем пункте мы рассматривали средства и устройства автомобиля, защищающие пассажиров и водителей в момент совершения аварии, то в этот раз поговорим о комплексе, который позволяет максимально обезопасить здоровье пешехода, попавшего под колеса рассматриваемого автомобиля.

  1. Бамперы – в конструкции современных бамперов входит несколько энерго- и кинетически-поглощающих элементов, которые присутствуют как на передней части автомобиля так и сзади. Их предназначением является абсорбация возникающей от удара энергии за счёт подверженных к сминанию блоков. Это не только позволяет понизить риск нанесения урона пешеходу, но и здорово уменьшает повреждения внутри салона авто.
  2. Наружные выступы автомобилей – как правило, к полезным свойствам таких элементов приписать тяжело. Однако, как это может показаться на первый взгляд, большинство из этих элементов имеют схожий принцип самодеструкции, описанный ранее в пункте 6. раздела «Внутренняя пассивная безопасность».
  3. Приспособления для защиты пешеходов – отдельные компании-производители в лице Bosch, Siemens, TRW и других, на протяжении нескольких десятилетий активно разрабатывают системы обеспечивающие дополнительную безопасность пешеходам, попавшим в ДТП. Например, система Electronic Pedestrian Protection позволят поднимать крышу капота, увеличивая область столкновения того с телом пешехода, выступая при этом в роли «щита» от более твердых и не ровных частей моторного отсека.

По имеющимся статистическим данным, большая часть происходит с участием автомобилей, следовательно, именно соображениям безопасности конструкторы и производители машин уделяют повышенное внимание. Большой объем работы в этом направлении производится на стадии проектирования, где осуществляется моделирование всех видов опасных моментов, способных произойти на дороге.

В современные системы активной и пассивной безопасности автомобиля входят как отдельные вспомогательные приспособления, так и достаточно сложные технологические решения. Применение всего этого комплекса средств призвано помочь водителям автомобилей и всем другим участникам дорожного движения сделать жизнь более безопасной.

Системы активной безопасности

Основная задача установленных систем активной безопасности состоит в создании условий для исключения возникновения любого рода . В настоящий момент за обеспечение активной безопасности отвечают в основном электронные системы автомобиля.

При этом стоит учитывать, что главным звеном, обеспечивающим отсутствие аварийных ситуаций на дороге, по-прежнему является водитель. Все имеющиеся в наличие электронные системы должны лишь помогать ему в этом и облегчать управление транспортным средством, исправляя незначительные ошибки.

Антиблокировочная система (ABS)

Антиблокировочные устройства в настоящий момент устанавливаются на большую часть всех транспортных средств. Такие системы безопасности помогают исключить блокирование колес в момент торможения. Это дает возможность сохранять управляемость транспортным средством во всех сложных ситуациях.

Наибольшая необходимость применения систем ABS возникает обычно при перемещении на скользкой дороге. Если во время гололеда блоку управления транспортным средством поступает информация о том, что скорость вращения какого-либо из колес меньше, чем у остальных, то ABS регулирует давление тормозной системы на него. В результате скорость вращения всех колес выравнивается.

Антипробуксовочная система (ASC)

Такой вид активной безопасности можно считать одной из разновидностей антиблокировочной системы, и предназначен он для обеспечения управляемости транспортным средством во время разгона или подъема на дороге со скользким покрытием. Пробуксовка в данном случае предотвращается благодаря перераспределению между колесами крутящего момента.

Система курсовой устойчивости (ESP)

Активная система безопасности автомобиля такого рода позволяет сохранить устойчивость транспортного средства и предотвратить возникновение чрезвычайных ситуаций. В своей основе ESP использует антипробуксовочную и антиблокировочную системы, стабилизируя движение автомобиля. Кроме того, ESP отвечает за просушку тормозных колодок, чем значительно облегчает ситуацию при движении на мокрой трассе.

Система распределения тормозных усилий (EBD)

Распределять тормозные усилия необходимо для того, чтобы исключить вероятность заноса транспортного средства в процессе торможения. EBD представляет собой разновидность антиблокировочной системы и перераспределяет давление в тормозной системе между передними и задними колесами.

Система блокировки дифференциала

Основная задача дифференциала – передача крутящего момента от КПП на ведущие колеса. Такой комплекс безопасности обеспечивает передачу усилия всем потребителям в том случае, когда одно из ведущих колес имеет плохое сцепление с поверхностью, находится в воздухе или на скользкой дороге.

Системы помощи при спуске или подъеме

Включение таких систем серьезно облегчает управление транспортным средством при движении на спуске или подъеме. Цель электронной системы помощи – поддерживать необходимую скорость, подтормаживая одно из колес при необходимости.

Парковочная система

Датчики парктроника задействуются при маневрировании машины с целью предотвратить ее столкновение с другими объектами. С целью предупреждения водителя подается звуковой сигнал, иногда на табло показывается оставшееся расстояние до препятствия.

Ручной тормоз

Основное предназначение стояночного тормоза – в удержании транспортного средства в статическом положении во время стоянки.

Системы пассивной безопасности автомобиля

Цель, которую должна выполнять любая система пассивной безопасности автомобиля состоит в уменьшении тяжести возможных последствий в том случае, если аварийная ситуация все-таки произошла. Применяемые способы пассивной защиты могут быть такими:

  • ремень безопасности;
  • подушка безопасности;
  • подголовник;
  • сделанные из мягкого материала детали передней панели машины;
  • передний и задний бамперы, поглощающие энергию при ударе;
  • складывающаяся рулевая колонка;
  • безопасный узел педалей;
  • подвеска двигателя и всех основных агрегатов, уводящая его под низ автомобиля при аварии;
  • изготовление стекол по технологии, предотвращающей возникновение острых осколков.

Ремень безопасности

Среди всех систем пассивной безопасности, применяемых в автомобиле, ремни считаются одним из основных элементов.

В случае дорожно-транспортного происшествия ремни безопасности позволяют удержать на своем месте водителя и пассажиров.

Подушка безопасности

Наряду с удерживающими ремнями, подушка безопасности также относится к основным элементам пассивной защиты. При возникновении быстро наполняющиеся газом подушки предохраняют находящихся в машине людей от получения травм со стороны рулевого колеса, стекла или передней панели.

Подголовник

Подголовники позволяют обезопасить шейный отдел человека при некоторых видах аварий.

Заключение

Системы активной и пассивной безопасности автомобиля во многих случаях помогают предотвратить возникновение аварийных ситуаций, но лишь ответственное поведение на дороге может в значительной степени гарантировать отсутствие тяжелых последствий.

Безопасность транспортных средств. Безопасность транспортного средства включает в себя комплекс конструктивных и эксплуатационных свойств, снижающих вероятность дорожно-транспортных происшествий, тяжесть их последствий и отрицательное влияние на окружающую среду.

Понятие безопасность конструкции автомобиля включает в себя активную и пассивную безопасность.

Активная безопасность конструкции — это конструктивные меры, направленные на предупреждение аварий. К ним относятся меры, обеспечивающие управляемость и устойчивость при движении, эффективное и надежное торможение, легкое и надежное рулевое управление, малую утомляемость водителя, хорошую обзорность, эффективное действие внешних осветительных и сигнальных приборов, а также повышение динамических качеств автомобиля.

Пассивная безопасность конструкции — это конструктивные мероприятия, исключающие или сводящие к минимуму последствия аварии для водителя, пассажиров и груза. Они предусматривают применение травмобезопасных конструкций рулевых колонок, энергоемких элементов на передней и задней части автомобилей, мягкой обивки кабины и кузова и мягких накладок, ремней безопасности, безосколочных стекол, герметичной топливной системы, надежных противопожарных устройств, замков для капота и кузова с блокирующими устройствами, безопасной компоновки деталей и всего автомобили.

В последние годы уделяется большое внимание совершенствованию безопасности конструкции автомобилей во всех производящих их странах. В Соединенных Штатах Америки более широко. Под активной безопасностью транспортного средства понимаются его свойства, снижающие вероятность возникновения дорожнотранспортного происшествия.

Активная безопасность обеспечивается несколькими эксплуатационными свойствами, позволяющими водителю уверенно управлять автомобилем, разгоняться и тормозить с необходимой интенсивностью, совершать маневрирование на проезжей части, которого требует дорожная обстановка, без значительных затрат физических сил. Основные из этих свойств: тяговые, тормозные, устойчивость, управляемость, проходимость, информативность, обитаемость.

Под пассивной безопасностью транспортного средства понимаютсяего свойства, снижающие тяжесть последствий дорожно-транспортного происшествия.

Различают внешнюю и внутреннюю пассивную безопасность автомобиля. Основным требованием внешней пассивной безопасности является обеспечение такого конструктивного выполнения наружных поверхностей и элементов автомобиля, при котором вероятность повреждений человека этими элементами в случае дорожно - транспортного происшествия была бы минимальной.


Как известно, значительное количество происшествий связано со столкновениями и наездами на неподвижное препятствие. В связи с этим одним из требований к внешней пассивной безопасности автомобилей является предохранение водителей и пассажиров от ранений, а также самого автомобиля от повреждений с помощью внешних элементов конструкции.

Рисунок 8.1 - Схема сил и моментов действующих на автомобиль

Рисунок 8.1 - Структура безопасности транспортных средств

Примером элемента пассивной безопасности может быть травмобезопасный бампер, назначение которого - смягчать удары автомобиля о препятствия при малых скоростях движения (например, при маневрировании в зоне стоянки).

Пределом выносливости перегрузок для человека является 50-60g (g-ускорение свободного падения). Пределом выносливости для незащищённого тела является величина энергии, воспринимаемая непосредственно телом, соответствующая скорости движения около 15 км/ч. При 50 км/ч энергия превышает допустимую примерно в 10 раз. Следовательно задача состоит в снижении ускорений тела человека при столкновении за счёт продолжительных деформаций передней части кузова автомобиля, при которых поглощалось бы как можно больше энергии.

То есть, чем больше деформация автомобиля и чем дольше она происходит, тем меньшие перегрузки испытывает водитель при столкновении с препятствием.

К внешней пассивной безопасности имеют отношение декоративные элементы кузова, ручки, зеркала и другие детали, закреплённые на кузове автомобиля. На современных автомобилях всё шире применяются утомленные ручки дверей, не наносящие травм пешеходам в случае дорожно - транспортного происшествия. Не применяются выступающие эмблемы заводов-изготовителей на передней части автомобиля.

К внутренней пассивной безопасности автомобиля предъявляются два основных требования:

Создание условий, при которых человек мог бы безопасно выдержать любые перегрузки;

Исключение травмоопасных элементов внутри кузова (кабины). Водитель и пассажиры при столкновении после мгновенной остановки автомобиля еще продолжают двигаться, сохраняя скорость движения, которую автомобиль имел перед столкновением. Именно в это время происходит большая часть травм в результате удара головой о ветровое стекло, грудью о рулевое колесо и рулевую колонку, коленями о нижнюю кромку щитка приборов.

Анализ дорожно-транспортных происшествий показывает, что подавляющее большинство погибших находилось на переднем сиденье. Поэтому при разработке мероприятий по пассивной безопасности в первую очередь уделяется внимание обеспечению безопасности водителя и пассажира, находящихся на переднем сиденье.

Конструкция и жесткость кузова автомобиля выполняются такими, чтобы при столкновениях деформировались передняя и задняя части кузова, а деформация салона (кабины) была по возможности минимальной для сохранения зоны жизнеобеспечения, то есть минимально необходимого пространства, в пределах которого исключено сдавливание тела человека, находящегося внутри кузова.

Кроме того, должны быть предусмотрены следующие меры, снижающие тяжесть последствии при столкновении:

Необходимость перемещения руля и рулевой колонки и поглощения ими энергии удара, а также равномерного распределения удара по поверхности груди водителя;

Исключение возможности выброса или выпадения пассажиров и водителя (надежность дверных замков);

Наличие индивидуальных защитных и удерживающих средств для всех пассажиров и водителя (ремни безопасности, подголовники, пневмоподушки);

Отсутствие травмоопасных элементов перед пассажирами и водителем;

Оборудование кузова травмобезопасными стеклами. Эффективность применения ремней безопасности в сочетании с другими мероприятиями подтверждена статистическими данными. Так, использование ремней уменьшает количество травм на 60 - 75% и снижает их тяжесть.

Одним из эффективных способов решения проблемы ограничения перемещения водителя и пассажиров при столкновении является применение пневматических подушек, которые при столкновении автомобиля с препятствием наполняются сжатым газом за 0,03 - 0,04с, воспринимают на себя удар водителя и пассажиров и тем самым снижают тяжесть травмы.

Под послеаварийной безопасностью транспортного средства понимаются его свойства в случае аварии не препятствовать эвакуации людей, не наносить травм при эвакуации и после нее. Основными мерами послеаварийной безопасности являются противопожарные мероприятия, мероприятия по эвакуации людей, аварийная сигнализация.

Наиболее тяжелым последствием дорожно - транспортного происшествия является возгорание автомобиля. Чаще всего возгорание происходит при тяжелых происшествиях, таких как столкновение автомобилей, наезды на неподвижные препятствия, а также опрокидывание. Несмотря на небольшую вероятность возгорания (0,03 -1,2% от общего количества происшествий), их последствия тяжелейшие.

Они вызывают почти полное разрушение автомобиля и при невозможности эвакуации - гибель людей, В таких происшествиях топливо выливается из поврежденного бака или из заливной горловины. Возгорание происходит от горячих деталей системы выпуска отработавших газов, от искры при неисправной системе зажигания или возникшей от трения деталей кузова об дорогу или о кузов другого автомобиля. Могут быть и другие причины возгорания.

Под экологической безопасностью транспортного средства понимается его свойство снижать степень отрицательного воздействия на окружающую среду. Экологическая безопасность охватывает все стороны использования автомобиля. Ниже перечислены основные аспекты экологии, связанные с эксплуатацией автомобиля.

Потеря полезной площади земли . Земля, необходимая для движения и стоянки автомобилей, исключается из пользования других отраслей народного хозяйства. Общая протяженность мировой сети автомобильных дорог с твердым покрытием превышает 10 млн км, что означает потерю площади свыше 30 млн га. Расширение улиц и площадей приводит к «увеличению территорий городов и удлинению всех коммуникаций. В городах с развитой дорожной сетью и предприятиями автосервиса площади, отведенные для движения и стоянок автомобилей, занимают до 70 % всей территории.

Кроме того, огромные территории занимают заводы по производству и ремонту автомобилей, службы обеспечения функционирования автомобильного транспорта: АЗС, СТО, кемпинги и т.д.

Загрязнение атмосферы . Основная масса вредных примесей, рассеянных в атмосфере, является результатом эксплуатации автомобилей. Двигатель средней мощности выбрасывает в атмосферу за один день эксплуатации около 10 м 3 отработавших газов, в состав которых входит окись углерода , углеводороды , окислы азота и многие другие токсичные вещества.

В нашей стране установлены следующие нормы среднесуточных предельно допустимых концентраций токсичных веществ в атмосфере:

Углеводороды - 0,0015 г/м;

Окись углерода - 0,0010 г/м;

Двуокись азота - 0,00004 г/м.

Использование природных ресурсов. На производство и экплуатацию автомобилей используются миллионы тонн высококачественных материалов, что приводит к истощению их природных запасов. При экспоненциальном росте потреблении энергии на душу населения, характерном для промышленно развитых стpaн, скоро наступит такой момент, когда существующие источники энергии не смогут удовлетворить потребности человека.

Значительная доля потребляемой энергии расходуется автомобилями, к.п.д. двигателей которых составляет 0,3 0,35, Следовательно, 65 - 70% энергетического потенциала не используется.

Шум и вибрация. Уровень шума, длительно переносимым человеком без вредных последствий, составляем 80 - 90 дБ На улицах крупных городов и промышленных центров уровень шума достигает 120- 130 дБ. Колебания почвы, вызванные движением автомобилей, пагубно сказываются на зданиях и сооружениях. Для защиты человека от пагубного влиянии шума транспортных средств применяют различные приемы: совершенствование конструкции автомобилей, шумозащитные сооружения и зеленые насаждения вдоль оживленных городских магистралей, организация такого режима движения, когда уровень шума наименьший.

Величина тяговой силы тем больше, чем больше крутящий момент двигателя и передаточные числа коробки передач и главной передачи. Но величина тяговой силы не может превысить силу сцепления ведущих колес с дорогой. Если тяговая сила превысит силу сцепления колес с дорогой, то ведущие колеса будут пробуксовывать.

Сила сцепления равна произведению коэффициента сцепления на сцепной вес. Для тягового автомобиля сцепной вес равен нормальной нагрузке, приходящейся на затормаживаемые колеса.

Коэффициент сцепления зависит от типа и состояния покрытия дороги, от конструкции и состояния шин (давление воздуха, рисунок протектора), от нагрузки и скорости движения автомобиля. Величина коэффициента сцепления снижается при мокрой и влажной поверхностях дороги, особенно при увеличении скорости движения и изношенном протекторе шин. Например, при сухой дороге с асфальтобетонным покрытием коэффициент сцепления равен 0,7 - 0,8, а для мокрой - 0,35 - 0,45. При обледенелой дороге коэффициент сцепления снижается до 0,1 - 0,2.

Сила тяжести автомобиля приложена в центре тяжести. У современных легковых автомобилей центр тяжести располагается на высоте 0,45 - 0,6 м от поверхности дороги и примерно посередине автомобиля. Поэтому нормальная нагрузка легкового автомобиля распределяется по его осям примерно поровну, т.е. сцепной вес равен 50 % нормальной нагрузки.

Высота расположения центра тяжести у грузовых автомобилей 0,65 - 1 м. У полностью груженных грузовых автомобилей сцепной вес составляет 60 75 % нормальной нагрузки. У полноприводных автомобилей сцепной вес равен нормальной нагрузке автомобиля.

При движении автомобиля указанные соотношения изменяются, так как происходит продольное перераспределение нормальной нагрузки между осями автомобилям при передаче ведущими колесами тяговой силы больше нагружаются задние колеса, а при торможении автомобиля - передние колеса. Кроме того, перераспределение нормальной нагрузки между передними и задними колесами имеет место при движении автомобиля на спуск или на подъем.

Перераспределение нагрузки, изменяя величину сцепного веса, влияет на величину сцепления колес с дорогой, тормозные свойства и устойчивость автомобиля.

Силы сопротивления движению . Тяговая сила на ведущих колесах автомобиля. При равномерном движении автомобиля по горизонтальной дороге такими силами являются: сила сопротивления качению и сила сопротивления воздуха. При движении автомобиля на подъем возникает сила сопротивления подъему (рис. 8.2), а при разгоне автомобиля - сила сопротивления разгону (сила инерции).

Сила сопротивления качению возникает вследствие деформации шин и поверхности дороги. Она равна произведению нормальной нагрузки автомобиля на коэффициент сопротивления качению.

Рисунок 8.2 - Схема сил и моментов действующих на автомобиль

Коэффициент сопротивления качению зависит от типа и состояния покрытия дороги, конструкции шин, их износа и давления воздуха в них, скорости движения автомобиля. Например, для дороги с асфальтобетонным покрытием коэффициент сопротивления качению равен 0,014 0,020, для сухой грунтовой дороги - 0,025-0,035.

На твердых дорожных покрытиях коэффициент сопротивления качению резко увеличивается при снижении давления воздуха в шинах, и возрастает с ростом скорости движения, а также с увеличением тормозного и крутящего моментов.

Сила сопротивления воздуха зависит от коэффициента сопротивления воздуха, лобовой площади и скорости движения автомобиля. Коэффициент сопротивления воздуха определяется типом автомобиля и формой его кузова, а лобовая площадь - колеей колес (расстоянием между центрами шин) и высотой автомобиля. Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля.

Сила сопротивления подъему тем больше, чем больше масса автомобиля и крутизна подъема дороги, которая оценивается углом подъема в градусах или величиной уклона, выраженной в процентах. При движении автомобиля под уклон сила сопротивления подъему, наоборот, ускоряет движение автомобиля.

На автомобильных дорогах с асфальтобетонным покрытием продольный уклон обычно не превышает 6%. Вели коэффициент сопротивления качению принять равным 0,02, то общее сопротивление дороги составит 8% т нормальной нагрузки автомобиля.

Сила сопротивления разгону (сила инерции) зависит от массы автомобиля, его ускорения (приросту скорости в единицу времени) и массы вращающихся частей (маховик, колеса), на ускорение которых также затрачивается тяговая сила.

При разгоне автомобиля сила сопротивления разгону направлена в сторону, обратную движению. При торможении автомобиля и замедлении его движения сила инерции направлена в сторону движения автомобиля.

Торможение автомобиля. Тормозная динамичность характеризуется способностью автомобиля быстро уменьшить скорость и остановиться. Надежная и эффективная тормозная система позволяет водителю уверенно вести автомобиль с большой скоростью и при необходимости остановить его на коротком участке пути.

Современные автомобили имеют четыре тормозные системы: рабочую, запасную, стояночную и вспомогательную. Причем, привод ко всем контурам тормозной системы раздельный. Наиболее важной для управления и безопасности является рабочая тормозная система. С ее помощью осуществляется служебное и экстренное торможение автомобиля.

Служебным называют торможение с небольшим замедлением (1-3 м/с 2). Его применяют для остановки автомобиля на ранее намеченном месте или для плавного снижения скорости.

Экстренным называют торможение с большим замедлением, обычно максимальным, доходящим до 8 м/с2. Его применяют в опасной обстановке для предотвращении пасши ни неожиданно появившееся препятствие.

При торможении автомобиля на и о колеса действует не сила тяги, а тормозные силы Рт1 и Рт2, как показано на (рис. 8.3). Сила инерции в этом случае направлена в сторону движения автомобиля.

Рассмотрим процесс экстренного торможения. Водитель заметив препятствие, оценивает дорожную обстановку, принимает решение о торможении и переносит ногу на тормозную педаль. Время t , необходимое для этих действий (время реакции водителя), изображено на (рис. 8.3) отрезком АВ.

Автомобиль за это время проходит путь S не снижая скорости. Затем водитель нажимает на тормозную педаль и давление от главного тормозного цилиндра (или тормозного крана) передается колесным тормозам (время срабатывания тормозного привода tpт - отрезок ВС. Время tт зависит в основном от конструкции тормозного привода. Оно равно в среднем 0,2-0,4с у автомобилей с гидравлическим приводом и 0,6-0,8 с с пневматическим. У автопоездов с пневматическим тормозным приводом время tт может достигать 2-3 с. Автомобиль за время tт проходит путь Sт, так же не снижая скорости.

Рисунок 8.3 - Остановочный и тормозной пути автомобиля

По истечении времени tрт тормозная система полностью включена (точка С), и скорость автомобиля начинает снижаться. При этом замедление сначала увеличивается (отрезок CD, время нарастания тормозной силы tнт), а затем остается примерно постоянным (установившимся) и равным jуст (время t уст, отрезок DE).

Длительность периода tнт зависит от массы транспортного средства, типа и состояния дорожного покрытия. Чем больше масса автомобиля и коэффициент сцепления шин с дорогой, тем больше время t. Значение этого времени находится в пределах 0,1-0,6 с. За время tнт автомобиль перемещается на расстояние Sнт, и скорость его несколько снижается.

При движении с установившимся замедлением (время tуст, отрезок DE), скорость автомобиля за каждую секунду уменьшается на одну и ту же величину. В конце торможения она падает до нуля (точка Е), и автомобиль, пройдя путь Sуст, останавливается. Водитель снимает ногу с тормозной педали и происходит оттормажи-вание (время оттормаживания toт, участок EF).

Однако под действием силы инерции передний мост при торможении нагружается, а задний, напротив, разгружается. Поэтому реакция на передних колесах Rzl увеличивается, а на задних Rz2 уменьшается. Соответственно изменяются силы сцепления, поэтому у большинства автомобилей полное и одновременное использование сцепления всеми колесами автомобиля наблюдается крайне редко и фактическое замедление меньше максимально возможного.

Чтобы учесть снижение замедления, в формулу для определения jуст приходится вводить поправочный коэффициент эффективности торможения K.э, равный 1,1-1,15 для легковых автомобилей и 1,3-1,5 для грузовых автомобилей и автобусов. На скользких дорогах тормозные силы на всех колесах автомобиля практически одновременно достигают значения силы сцепления.

Тормозной путь меньше остановочного, т.к. за время реакции водителя автомобиль перемещается на значительное расстояние. Остановочный и тормозной пути увеличиваются с ростом скорости и уменьшением коэффициента сцепления. Минимально допустимые значения тормозного пути при начальной скорости 40 км/ч на горизонтальной дороге с сухим, чистым и ровным покрытием нормированы.

Эффективность тормозной системы в большой степени зависит от ее технического состояния и технического состояния шин. В случае проникновения в тормозную систему масла или воды снижается коэффициент трения между тормозными накладками и барабанами (или дисками), и тормозной момент уменьшается. При износе протекторов шин уменьшается коэффициент сцепления.

Это влечет за собой снижение тормозных сил. В эксплуатации часто тормозные силы левых и правых колес автомобиля различны, что вызывает его поворот вокруг вертикальной оси. Причинами могут быть различный износ тормозных накладок и барабанов или шин или проникновение в тормозную систему одной стороны автомобиля масла или воды, уменьшающих коэффициент трения и снижающих тормозной момент.

Устойчивость автомобиля. Под устойчивостью понимают свойства автомобиля противостоять заносу, скольжению, опрокидыванию. Различают продольную и поперечную устойчивость автомобиля. Более вероятна и опасна потеря поперечной устойчивости.

Курсовой устойчивостью автомобиля называют его свойство двигаться в нужном направлении без корректирующих воздействий со стороны водителя, т.е. при неизменном положении рулевого колеса. Автомобиль с плохой курсовой устойчивостью все время неожиданно меняет направление движения.

Это создает угрозу другим транспортным средствам и пешеходам. Водитель, управляя неустойчивым автомобилем, вынужден особенно внимательно следить за дорожной обстановкой и постоянно корректировать движение, чтобы предотвратить выезд за пределы дороги. При длительном управлении таким автомобилем водитель быстро утомляется, повышается возможность ДТП.

Нарушение курсовой устойчивости происходит в результате действия возмущающих сил, например, порывов бокового ветра, ударов колес о неровности дороги, а также из-за резкого поворота управляемых колес водителем. Потеря устойчивости может быть вызвана и техническими неисправностями (неправильная регулировка тормозных механизмов, излишний люфт в рулевом управлении или его заклинивание, прокол шины и др.)

Особенно опасна потеря курсовой устойчивости при большой скорости. Автомобиль, изменив направление движения и отклонившись даже на небольшой угол, может через короткое время оказаться на полосе встречного движения. Так, если автомобиль, движущийся со скоростью 80 км/ч, отклонится от прямолинейного направления движения всего на 5°, то через 2,5с он переместиться в сторону почти на I м и водитель может не успеть вернуть автомобиль на прежнюю полосу.

Рисунок 8.4 - Схема сил, действующих на автомобиль

Часто автомобиль теряет устойчивость при движении по дороге с поперечным уклоном (косогору) и при повороте на горизонтальной дороге.

Если автомобиль движется по косогору (рис.8.4,а) сила тяжести G составляет с поверхностью дороги угол β и ее можно разложить на две составляющие: силу Р1, параллельную дороге, и силу Р2, перпендикулярную ей.

Сила Р1, стремиться сдвинуть автомобиль под уклон и опрокинуть его. Чем больше угол косогора β , тем больше сила Р1 , следовательно, тем вероятнее потеря поперечной устойчивости. При повороте автомобиля причиной потери устойчивости является центробежная сила Рц (рис. 8.4,б), направленная от центра поворота и приложенная к центру тяжести автомобиля. Она прямо пропорциональна квадрату скорости автомобиля и обратно пропорциональна радиусу кривизны его траектории.

Поперечному скольжению шин по дороге противодействуют силы сцепления, как уже отмечалось выше, которые зависят от коэффициента сцепления. На сухих, чистых покрытиях силы сцепления достаточно велики, и автомобиль не теряет устойчивости даже при большой поперечной силе. Если дорога покрыта слоем мокрой грязи или льда, автомобиль может занести даже в том случае, когда он движется с небольшой скоростью по сравнительно пологой кривой.

Максимальная скорость, с которой можно двигаться по криволинейному участку радиусом R без поперечного скольжения шин, равна Так, выполняя поворот на сухом асфальтобетонном покрытии (jx = 0,7) при R = 50м, можно двигаться со скоростью около 66 км/ч. Преодолевая тот же поворот после дождя (jx = 0,3) без скольжения можно двигаться лишь при скорости 40-43 км/ч. Поэтому перед поворотом нужно уменьшить скорость тем больше, чем меньше радиус предстоящего поворота. Формула определяет скорость, при которой колеса обоих мостов автомобиля скользят в поперечном направлении одновременно.

Такое явление в практике наблюдается крайне редко. Гораздо чаще начинают скользить шины одного из мостов - переднего или заднего. Поперечное скольжение переднего моста возникает редко и к тому же быстро прекращается. В большинстве скользят колеса заднего моста, которые, начав двигаться в поперечном направлении, скользят все быстрее. Такое ускоряющееся поперечное скольжение называют заносом. Для гашения начавшегося заноса нужно повернуть рулевое колесо в сторону заноса. Автомобиль при этом начнет двигаться по более пологой кривой, радиус поворота увеличиться, а центробежная сила уменьшится. Поворачивать рулевое колесо нужно плавно и быстро, но не на очень большой угол, чтобы не вызвать поворот в противоположную сторону.

Как только занос прекратиться, нужно также плавно и быстро вернуть рулевое колесо в нейтральное положение. Следует также заметить, что для выхода из заноса заднеприводного автомобиля подачу топлива нужно уменьшить, а на переднеприводном, напротив, увеличить. Часто занос возникает во время экстренного торможения, когда сцепление шин с дорогой уже использовано для создания тормозных сил. В этом случае следует немедленно прекратить или ослабить торможение и тем самым повысить поперечную устойчивость автомобиля.

Под действием поперечной силы автомобиль может не только скользить по дороге, по и опрокинуться на бок или на крышу. Возможность опрокидывания зависит от положения центра, тяжести автомобиля. Чем выше от поверхности автомобиля находится центр тяжести, тем вероятнее опрокидывание. Особенно часто опрокидываются автобусы, а также грузовые автомобили, занятые на перевозке легковесных, объемных грузов (сено, солома, пустая тара и т.д.) и жидкостей. Под действием поперечной силы рессоры с одной стороны автомобиля сжимаются и кузов его наклоняется, увеличивая опасность опрокидывания.

Управляемость автомобиля. Под управляемостью понимают свойство автомобиля обеспечивать движение в направлении, заданном водителем. Управляемость автомобиля больше, чем другие его эксплуатационные свойства, связана с водителем.

Для обеспечения хорошей управляемости конструктивные параметры автомобиля должны соответствовать психофизиологическим характеристикам водителя.

Управляемость автомобиля характеризуется несколькими показателями. Основные из них: предельное значение кривизны траектории при круговом движении автомобиля, предельное значение скорости изменения кривизны траектории, количество энергии, затрачиваемой на управление автомобилем, величина самопроизвольных отклонений автомобиля от заданного направления движения.

Управляемые колеса под воздействием неровностей дороги постоянно отклоняются от нейтрального положения. Способность управляемых колес сохранять нейтральное положение и возвращаться в него после поворота называется стабилизацией управляемых колес. Весовая стабилизация обеспечивается поперечным наклоном шкворней передней подвески. При повороте колес благодаря поперечному наклону шкворней автомобиль приподнимается, но своим весом стремиться вернуть повернутые колеса в исходное положение.

Скоростной стабилизирующий момент обусловлен продольным наклоном шкворней. Шкворень расположен так, что его верхний конец направлен назад, а нижний вперед. Ось шкворня пересекает поверхность дороги впереди пятна контакта колеса с дорогой. Поэтому при движении автомобиля сила сопротивления качению создает стабилизирующий момент относительно оси шкворня. При исправном рулевом приводе и рулевом механизме после поворота автомобиля управляемые колеса и рулевое колесо должны возвращаться в нейтральное положение без участия водителя.

В рулевом механизме червяк расположен относительно ролика с небольшим перекосом. В связи с этим в среднем положении зазор между червяком и роликом минимален и близок к нулю, а при отклонении ролика и сошки в любую сторону зазор увеличивается. Поэтому при нейтральном положении колес в рулевом механизме создается повышенное трение, способствующее стабилизации колес и скоростного стабилизирующих моментов.

Неправильная регулировка рулевого механизма, большие зазоры в рулевом приводе могут стать причиной плохой стабилизации управляемых колес, причиной колебания курса автомобиля. Автомобиль с плохой стабилизацией управляемых колес самопроизвольно меняет направление движения, вследствие чего водитель вынужден непрерывно поворачивать рулевое колесо то в одну, то в другую сторону, чтобы возвратить автомобиль на свою полосу движения.

Плохая стабилизация управляемых колес требует значительных затрат физической и психической энергии водителя, повышает износ шин и деталей рулевого привода.

При движении автомобиля на повороте наружные и внутренние колеса катятся по окружностям различного радиуса (рис. 8.4). Для того, чтобы колеса катились без скольжения, их оси должны пересекаться в одной точке. Л для выполнения этого условия управляемые колеса должны поворачиваться на разные углы. Поворот колес автомобиля на разные углы обеспечивает рулевая трапеция. Наружное колесо всегда поворачивается на меньший угол, чем внутреннее, и эта разница тем больше, чем больше угол поворота колес.

Значительное влияние на поворачиваемость автомобиля оказывает эластичность шин. При действии на автомобиль боковой силы (неважно, силы инерции или бокового ветра) шины деформируются и колеса вместе с автомобилем смещаются в сторону действия боковой силы. Это смещение тем больше, чем больше боковая сила и чем выше эластичность шин. Угол между плоскостью вращения колеса и направлением его движения называется углом увода 8 (рис. 8.5).

При одинаковых углах увода передних и задних колес автомобиль сохраняет заданное направление движения, но повернут относительно него на величину угла увода. Если угол увода колес передней оси больше угла увода колес задней тележки, то при движении автомобиля на повороте он будет стремиться двигаться по дуге большего радиуса, чем та, которую задает водитель. Такое свойство автомобиля называется недостаточной поворачиваемостью.

Если угол увода колес задней оси больше угла увода колес передней оси, то при движении автомобиля на повороте он будет стремиться двигаться по дуге меньшего радиуса, чем та, которую задает водитель. Такое свойство автомобиля называется избыточной поворачиваемостью.

Поворачиваемостью автомобиля можно в некоторой степени управлять, применяя шины разной пластичности, изменяя давление в них, изменяя распределение массы автомобиля по осям (за счет размещения груза).

Рисунок 8.5 - Кинематика поворота автомобиля и схема увода колеса

Автомобиль с избыточной поворачиваемостью более маневренный, но требует большего внимания и высокого профессионального мастерства от водителя. Автомобиль с недостаточной поворачиваемостью требует меньшего внимания и мастерства, но затрудняет работу водителя, так как требует поворотов рулевого колеса на большие углы.

Влияние поворачиваемости и на движение автомобиля становится заметным и существенным только на высоких скоростях.

Управляемость автомобиля зависит от технического состояния его ходовой части и рулевого управления. Уменьшение давления в одной из шин увеличивает ее сопротивление качению и уменьшает поперечную жесткость. Поэтому автомобиль со спущенной шиной постоянно отклоняемся и ее сторону. Для компенсации этого увода водитель поворачивает управляемые колеса в сторону, противоположную уводу, и колеса начинают катиться с боковым скольжением, интенсивно изнашиваясь при этом.

Износ деталей рулевого привода и шкворневого соединения приводит к образованию зазоров и возникновению произвольных колебаний колес.

При больших зазорах и высокой скорости движения колебания передних колес могут быть настолько значительными, что нарушится их сцепление с дорогой. Причиной колебания колес может явиться их дисбаланс из-за дисбаланса шины, заплатки па камере, грязи на диске колеса. Для предотвращения колебаний колес их необходимо балансировать на специальном стенде установкой на диск балансировочных грузов.

Проходимость автомобиля. Под проходимостью понимают свойство автомобиля двигаться по неровной и труднопроходимой местности не задевая за неровности нижним контуром кузова. Проходимость автомобиля характеризуется двумя группами показателей: геометрическими показателями проходимости и опорно- сцепными показателями проходимости. Геометрические показатели характеризуют вероятность задевания автомобиля за неровности, а опорно - сцепные характеризуют возможность движения по труднопроходимым участкам дорог и бездорожью.

По проходимости все автомобили можно разделить на три группы :

Автомобили общего назначения (колесная формула 4x2, 6x4);

Автомобили повышенной проходимости (колесная формула 4x4, 6x6);

Автомобили высокой проходимости, имеющие специальную компоновку и конструкцию, многоосные со всеми ведущими колесами, гусеничные или полугусеничные, автомобили - амфибии и другие автомобили, специально предназначенные для работы только в условиях бездорожья.

Рассмотрим геометрические показатели проходимости. Дорожный просвет - это расстояние между низшей точкой автомобиля и поверхностью дороги. Этот показатель характеризует возможность движения автомобиля без задевания за препятствия, расположенные на пути движения (рис.8.6).

Рисунок 8.6 - Геометрические показатели проходимости

Радиусы продольной и поперечной проходимости представляют собой радиусы окружностей, касательных к колесам и низшей точки автомобиля, расположенной внутри базы (колеи). Эти радиусы характеризуют высоту и очертания препятствия, которое может преодолеть автомобиль, не задевая за него. Чем они меньше, тем выше способность автомобиля преодолевать значительные неровности без задевания за них своими низшими точками.

Передний и нижний углы свеса, соответственно αп1 и αп2, образованы поверхностью дороги и плоскостью, касательной к передним или задним колесам и к выступающим низшим точкам передней или задней части автомобиля.

Максимальная высота порога, который может преодолеть автомобиль, для ведомых колес составляет 0,35...0,65 радиуса колеса. Максимальная высота порога, преодолеваемого ведущим колесом, может достигать радиуса колеса и иногда ограничивается не тяговыми возможностями автомобиля или сцепными свойствами дороги, а малыми величинами углов свеса или просвета.

Максимально необходимая ширина проезда при минимальном радиусе поворота автомобиля характеризует возможность маневрировать на малых площадках, поэтому проходимость автомобиля в горизонтальной плоскости часто рассматривают как отдельное эксплуатационное свойство маневренность. Наиболее маневренными являются автомобили со всеми управляемыми колесами. В случае буксировки прицепом или полуприцепов маневренность автомобиля ухудшается, так как мри поворотах автопоезда прицеп смешается к центру поворота, именно поэтому ширина полосы движения автопоезда больше, чем одиночного автомобиля.

К опорно - сцепным показателям проходимости относятся следующие. Максимальная сила тяги - наибольшая сила тяги, которую способен развивать автомобиль па низшей передаче. Сцепной вес - сила тяжести автомобиля, приходящаяся на ведущие колеса. Чем больше сцен пой вес, тем выше проходимость автомобиля.

Среди автомобилей с колесной формулой 4x2 наибольшую проходимость имеют заднемоторные заднеприводные и переднемоторные переднеприводные автомобили, так как при такой компоновке ведущие колеса всегда нагружены массой двигателя. Удельное давление шин на опорную поверхность определяется как отношение вертикальной нагрузки на шину к площади контакта, замеренной по контуру пятна контакта шины с дорогой q = GF.

Этот показатель имеет большое значение для проходимости автомобиля. Чем меньше удельное давление, тем меньше разрушается грунт, меньше глубина образуемой колеи, меньше сопротивление качению и выше проходимость автомобиля.

Коэффициент совпадении колеи представляет собой отношение колеи передних колес к колее задних колес. При полном совпадении колеи передних и задних колес задние катятся по грунту, уплотненному передними колесами, и сопротивление качению при этом минимально. При несовпадении колеи передних и задних колес затрачивается дополнительная энергия на разрушение задними колесами уплотненных стенок колеи, образованной передними колесами. Поэтому у автомобилей повышенной проходимости часто на задние колеса устанавливают одинарные шины, уменьшая тем самым сопротивление качению.

Проходимость автомобиля во многом зависит от его конструкции. Так, например, в автомобилях повышенной проходимости применяют дифференциалы повышенного трения, блокируемые межосевые и межколесные дифференциалы, широкопрофильные шины с развитыми грунтозацепами, лебедки для самовытаскивания и другие приспособления, облегчающие проходимость автомобиля в условиях бездорожья.

Информативность автомобиля. Под информативностью понимают свойство автомобиля обеспечивать необходимой информацией водителя и других участников движения. В любых условиях воспринимаемая водителем информация имеет важнейшее значение для безопасного управления автомобилем. При недостаточной видимости, особенно ночью, информативность среди других эксплуатационных свойств автомобиля оказывает особенное влияние на безопасность движения.

Различают внутреннюю и внешнюю информативность.

Внутренняя информативность - это свойство автомобиля обеспечивать водителя информацией о работе агрегатов и механизмов. Она зависит от конструкции панели приборов, устройств, обеспечивающих обзорность, рукояток, педалей и кнопок управления автомобилем.

Расположение приборов на панели и их устройство должны позволять водителю тратить минимальное время для наблюдения за показаниями приборов. Педали, рукоятки, кнопки и клавиши управления должны быть расположены так, чтобы водитель легко их находил, особенно ночью.

Обзорность зависит в основном от размера окон и стеклоочистителей, ширины и расположения стоек кабины, конструкции стеклоомывателей, системы обдува и обогрева стекол, расположения и конструкции зеркал заднего вида. Обзорность зависит также от удобства сиденья.

Внешняя информативность - это свойство автомобиля информировать других участников движения о своем положении на дороге и намерениях водителя по изменению направления и скорости движения. Она зависит от размеров, формы и окраски кузова, расположения световозвращателей, внешней световой сигнализации, звукового сигнала.

Грузовые автомобили средней и большой грузоподъемности, автопоезда, автобусы благодаря своим габаритам более заметны и лучше различимы, чем легковые автомобили и мотоциклы. Автомобили, окрашенные в темные цвета (черный, серый, зеленый, синий), из-за трудности их различения в 2 раза чаще попадают в ДТП, чем окрашенные в светлые и яркие цвета.

Система внешней световой сигнализации должна отличаться надежностью работы и обеспечивать однозначное толкование сигналов участниками дорожного движения в любых условиях видимости. Фары ближнего и дальнего света, а также другие дополнительные фары (прожектор, противотуманные) улучшают внутреннюю и внешнюю информативность автомобиля при движении ночью и в условиях недостаточной видимости.

Обитаемость автомобиля. Обитаемость транспортного средства - это свойства окружающей водителя и пассажиров среды, определяющие уровень комфортабельности и эстетичное i и места их труда и отдыха. Обитаемость характеризуется микроклиматом, эргономическими характеристиками кабины, шумом и вибрациями, загазованностью и плавностью хода.

Микроклимат характеризуется совокупностью температуры, влажности и скорости воздуха. Оптимальной температурой воздуха в кабине автомобиля считается 18...24°С. Понижение или повышение температуры, особенно на длительный период времени, сказывается на психофизиологических характеристиках водителя, приводит к замедлении) реакции и умственной деятельности, к физическому утомлению и, как результат, к снижению производительности труда и безопасности движения.

Влажность и скорость воздуха в значительной степени влияют на терморегуляцию организма. При низкой температуре и высокой влажности повышается теплоотдача и организм подвергается более интенсивному охлаждению. При высокой температуре и влажности теплоотдача резко снижается, что ведет к перегреву организма.

Водитель начинает ощущать движение воздуха в кабине при его скорости 0,25 м/с. Оптимальная скорость движения воздуха в кабине около 1м/с.

Эргономические свойства характеризуют соответствие сиденья и органов управления транспортного средства антропометрическим параметрам человека, т.е. размерам его тела и конечностей.

Конструкция сиденья должна способствовать посадке водителя за органами управления, обеспечивающей минимум затрат энергии и постоянную готовность в течении длительного времени.

Цветовая гамма внутри салона тоже оказывает определенное внимание на психику водителя, что, естественно, сказывается на работоспособности водителя и безопасности движения.

Природа шума и вибраций одна и та же - механические колебания деталей автомобиля. Источниками шума в автомобиле являются двигатель, трансмиссия, система выпуска отработавших газов, подвеска. Действие шума на водителя является причиной увеличения его времени реакции, временного ухудшения характеристик зрения, снижения внимания, нарушения координации движений и функций вестибулярного аппарата.

Отечественные и международные нормативные документы устанавливают предельно допустимый уровень шума в кабине в пределах 80 - 85 ДБ.

В отличие от шума, воспринимаемого ухом, вибрации воспринимаются поверхностью тела водителя. Так же, как и шум, вибрация наносит большой вред состоянию водителя, а при постоянном воздействии в течении длительного времени может повлиять на его здоровье.

Загазованность характеризуется концентрацией отработавших газов, паров топлива и других вредных примесей в воздухе. Особую опасность для водителя представляет окись углерода - газ без цвета и запаха. Попадая в кровь человека через легкие, он лишает ее возможности доставлять кислород клеткам организма. Человек погибает от удушья, ничего не чувствуя и не понимая, что с ним происходит.

В этой связи водитель должен внимательно следить за герметичностью выпускного тракта двигателя, предотвращать засасывание газов и паров из моторного отсека в кабину. Категорически запрещается пускать и главное прогревать двигатель в гараже при нахождении в нем людей.

Начиная с момента своего изобретения, автомобиль стал таить в себе потенциальную опасность как для водителя, так и для других участников дорожного движения. Вследствие того, что полностью вычеркнуть из окружающей действительности автомобильные аварии пока невозможно, конструкторы транспортных средств совершенствуют свои «детища» в направлении уменьшения вероятности возникновения ДТП и снижения до минимума их последствий. Выделяют пассивную и активную системы безопасности автомобиля. Под первой понимают совокупность эксплуатационных и конструктивных свойств машины, которые направлены на максимально возможное снижение тяжести ДТП, а вторая, о которой и пойдет речь дальше, включает в себя меры, способствующие не только недопущению аварии, но и исключению причин её возникновения, имеющих отношение к конструктивным особенностям транспортного средства.

Если пассивная безопасность отвечает за сохранение жизни и здоровья водителей и пассажиров после ДТП, то целью создания системы активной безопасности является исключение возникновения опасной обстановки . Прежде всего это касается не каких-то сверхсовременных специализированных разработок (хотя и они стоят не на последнем месте), а того, что все узлы автомобиля должны находиться в рабочем, исправном состоянии. Надежность машины заключается в том, что механизмы, из которых она состоит, не могут внезапно перестать выполнять свои функции. Как ни прискорбно это осознавать, но неожиданные поломки, которые не имеют отношения к столкновению либо другим внешним повреждениям, довольно часто являются причинами дорожно-транспортных происшествий.

Большое значение имеет возможность быстрого изменения скорости движения . Быстрое уменьшение и наращивание оборотов важно в условиях необходимости обгона и при проезде перекрестков, относящихся к числу опасных. Тяговые свойства особенно важны при выходе из потенциально опасных ситуаций, в случае, если нажимать на педаль тормоза уже поздно, возможность для маневра отсутствует, а избежать аварии можно лишь, опередив события. За счет специальной противобуксовочной системы колесо, вращающееся со скоростью, большей, нежели у остальных, будет притормаживаться. Если возникнет такая необходимость, то эта система уменьшит мощность, развиваемую .

Огромную роль в обеспечении высокого уровня активной безопасности играет . Всем известно, что возможность быстрой остановки транспортного средства может неоднократно спасти жизнь и здоровье как водителю с пассажирами, так и пешеходам. Естественно, в зимний период либо во время ливня возможно нарушение нормальной работы тормозов из-за того, что теряется сцепление колес с дорожным покрытием. Профилактикой этого является своевременная смена шин (это особенно важно при езде в гололед).

Шины представляют собой один из наиболее важных элементов активной безопасности любого современного автомобиля, ведь именно они связывают машину с дорогой. Полный комплект качественной резины дает владельцу транспортного средства серьезное преимущество в реакции на различные экстренные маневры. Качество покрышек оказывает существенное влияние и на . Спортивным шинам присуще более хорошее сцепление с покрытием дороги, но их структура, будучи довольно мягкой, разрушается достаточно быстро. В итоге срок службы таких покрышек оказывается намного меньше времени надежной работы обычной резины.

Существенное влияние на безопасность оказывает компоновка транспортного средства . В наши дни наиболее распространены переднемоторные автомобили, в которых силовой агрегат размещается перед пассажирским салоном. Выделяют транспортные средства с задним и передним приводом. Сегодня более популярны переднеприводные машины, что обусловлено рядом их достоинств перед автомобилями с задним приводом. Передний привод обеспечивает лучшую управляемость и устойчивость во время движения на высоких скоростях, что особенно заметно на скользкой или мокрой дороге, необходимую весовую нагрузку на паре ведущих колес. Кроме того, благодаря отсутствию такие машины создают меньше шума при езде.

К числу недостатков переднего привода относятся:
— ухудшение разгона на мокрой дороге и при движении «в горку» (при полной нагрузке);
— неравномерность распределения веса между осями при торможении;
— большая нагруженность и подверженность износу шин передних колес, которые являются ведущими;
— наличие таких сложных узлов, как ШРУСы.

Многие автовладельцы недооценивают антиблокировочную систему тормозов , которая представляет собой еще один важный элемент активной безопасности, не только оказывающий содействие при остановке машины, но и помогающий не потерять управление при движении по скользкой дороге. При необходимости экстренного замедления АБС работает иначе, нежели обыкновенная тормозная система. На транспортном средстве, оборудованном обычными тормозами, колеса при экстренной остановке могут заблокироваться, а это зачастую становится причиной заноса. АБС может самостоятельно определить, когда колесо блокируется. В этот момент колесо отпускается. При этом антиблокировочная система работает в десять раз быстрее, нежели среднестатистический шофер. Современная АБС может включать в себя еще и систему, обеспечивающую электронный контроль устойчивости.

Устойчивостью называется способность машины двигаться по требуемой траектории, оказывая противодействие тем силам, которые вызывают ее занос при движении на большой скорости. Многие специалисты называют электронный контроль устойчивости (ЭКУ) вторым по важности изобретением (после ремней безопасности) в сфере автомобильной безопасности . Благодаря данной системе водитель может лучше контролировать поведение машины. При этом он может следить, чтобы автомобиль двигался именно в том направлении, в котором нужно (относительно поворота рулевого колеса).

Система, обеспечивающая распределение тормозных усилий (известная как EBD), отличается от базовой АБС тем, что она помогает водителю все время, а не только в случае экстренного торможения. Благодаря использованию датчиков антиблокировочной системы, EBD производит анализ положения каждого из колес в процессе торможения. Результат – строго индивидуальное дозирование тормозного усилия на каждом колесе.

Электронная программа стабилизации вступает в работу в критических ситуациях, при потере управляемости (или высокой ее вероятности) транспортным средством. Данная система способствует стабилизации движения за счет притормаживания отдельных (а не всех сразу) колес. Эта программа начинает работать по назначению, если, к примеру, вследствие прохождения поворота направо на чересчур высокой скорости передние колеса оказываются снесенными с заданной водителем траектории в направлении действия инерционных сил. В этой ситуации программа стабилизации обеспечит притормаживание заднего колеса, которое идет по внутреннему радиусу. В результате машине придается большая поворачиваемость, и она направляется непосредственно в поворот.

Еще одна важная часть активной безопасности автомобиля – это информативность . Так называют свойство транспортного средства давать водителю и другим участникам движения всю нужную информацию. Довольно часто причиной ДТП является недостаток полученной информации от других автомобилей, которые находятся на проезжей части, а также о том, в каком состоянии находится дорожное покрытие.

Отдельно стоит поговорить о внешней информативности, под которой подразумевается обеспечение остальных участников дорожного движения сведениями, которые нужны для надлежащего взаимодействия с ними. Сюда относятся внешние световые приборы, звуковой сигнал, окраска, форма и размеры кузова. Согласно статистике, чаще других попадают в дорожно-транспортные происшествия машины с кузовами черного, синего, серого и зеленого цветов, что связано с трудностями их различения в темное время суток и в условиях плохой видимости.

Разумеется, неработающие «поворотники», габаритные огни и стоп-сигналы не дадут остальным участникам движения информации, необходимой для того, чтобы они смогли точно распознать намерения водителя и в итоге принять единственное верное решение. Важно помнить, что работоспособность всех элементов системы активной безопасности автомобиля может не раз оказать водителю неоценимую помощь на дороге.

________________________________________________________________________
КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «strizhmoscow.ru» — Все об устройство автомобиля. Информационный портал